
DT! FILE COPY J

NAVAL POSTGRADUATE SCHOOL
Monterey, California

'U-9

N DTIC
00 ELECTE

0I 6
O~'7.R A DV'S 2D

THESIS
TASKMASTER: A PROTOTYPE GRAPHICAL

USER-INTERFACE
TO A SCHEDULE OPTIMIZATION MODEL

by

Stephen R. Banham

.March 1990

Thesis Advisor Gordon H. Bradley

Approved for public release; distribution is unlimited.

Unclassified
security classification of this page

REPORT DOCUMENTATION PAGE

I a Report Security Classification Unclassified I b Restrictive Markings

2a Security Classification Authorit. 3 Distribution Availability of Report
2b Declassificauon Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Orsanization Report Number(s) 5 Monitormg Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitorng Organizaton
Naval Postgraduate School (ifapplicable) 37 Naval Postaaduate School
6c Address (citY. state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey. CA 93943-5000 Monterey, CA 93943-5000
Sa Name of Funding Sponsoring Organizauon 8h Office Symb~ol 9 Prmeurerrent fInsumei,k lderatiiauor .N.mt-r

f"if applicable)

Sc Address (city. state, and ZIP code) 10 Source of Funding Numbers

Program Element No I Project No ITask No IWork Lnit Accession No

II Title (include securirv classi)Tcation TASKMASTER: A PROTOTYPE GRAPHICAL USER INTERFACE TO A SCHED-
ULE OPTIMIZATION MODEL
12 Personal Author(s) Stephen R. Banham
13a Type of Report 13b Time Covered 14 Date of Report (year, month, day) 15 Page Count
Master's Thesis From To March 1990 91

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
- Cosati Codes 13 Subject Terms i continue on reverse if necessary and identify by block number)

Ield Group Sutrroup Scheduling, Graphical User Interface, DSS

Abstract (contuue on reierse if necessary and identijy by block number)
This .thesis investigates the use of current graphical interface techniques to build more effective computer-user interfaces

to Opera#ons Research (OR) schedule optimization models. The design is directed at the scheduling decision maker who
possesses limited OR experience. The feasiblity and validity of building an interface for this kind of user is demonstrated in
the development of a prototype gaphical user interface called Tasilcfaster. TaskA-aster is designed as the Dialog component
of a scheduling Decision Support System (DSS). The underlying scheduling model uses set-partitioning and mixed-integer
linear progamming to generate optimal schedules. Although the model was originally developed to address a specific prob-
lem, inter-deployment scheduling of Navy surface ships, TaskMaster has been designed to be problem-independent, enabling
it to address a broad range of scheduling problems with the same general structure. Taskl laster demonstrates the type of
interactive. graphical interface that can be developed specifically for non-specialists. It is easy to learn and to use. and yet fully
exploits the power of a sophisticated OR scheduling model. The prototype is implemented on a NeXT comuter, chosen
for its advanced computational power and state-of-the-art graphical interjface development tools.(J

20 Distribution A%ailability of Abstract 21 Abstract Security Classification
N unclassified unlimied C same as report C3 DTIC users Unclassified

22a Name of Responsible Individual 22h Telephone (include Area code) 22c Office S~mbol
Gordon H. Bradley (408) 646-2359 Code ORBZ

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted security classification of this page
All other edfitinon rre ob!"!

Unclassified

Approved for public release; distribution is unlimited.

TaskMaster: A Prototype Graphical User Interface

to a Schedule Optimization Model

by

Stephen R. Banharn

Lieutenant, Civil Engineer Corps, United States Navy
B.S., Oregon State University, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1990

Author: .

Stephen R. Banham

Approved by:

Gordon H. Brag'k., I esis Advisor

Daniel R. Dolk, Second Reader

i

ABSTRACT

This thesis investigates using current graphical interface techniques to build more
effective computer-user interfaces to Operations Research (OR) schedule optimization

models. The focus of the design is the scheduling decision maker who possesses limited
OR experience. The feasiblity and validity of this focus is demonstrated in the develop-

ment of a prototype graphical user interface called TaskMaster. TaskMaster is designed
as the Dialog component of a scheduling Decision Support System (DSS). The under-

lying scheduling model uses set-partitioning and mixed-integer linear programming to
generate optimal schedules. Although the model was originally developed to address a
specific problem, inter-deployment scheduling of Navy surface ships, TaskMaster has

been designed to be problem-independent, enabling it to address a broad range of
scheduling problems with the same general structure. TaskMaster demonstrates the

kind of interactive, graphical interface that can be developed specifically for non-
specialists. It is easy to learn and to use, and yet fully exploits the power of a sophisti-
cated OR scheduline model. The prototype is implemented on a NeXT computer due
to its advanced computational power and state-of-the-art graphical interface develop-

ment tools.

Acoession For

NTIS GRA&I
DTIC TAB 3
Unannounced 0
Just ificatlon

Dit}ribut iont
6; Aval1billt7 CodeS

Avail and/or

Dist Special

TABLE OF CONTENTS

1. INTRODUCTION ... 1

A. THE USER..1

1. The Traditional User.......................................2

2. An Analogy..3

3. The Proposed User..4

B. A DSS APPROACH..5

C. THE SCHEDULING DOMAIN................................. 7

D. THESIS APPROACH...9

11. SCHEDULING...11

A. G ENERA-'\L..11

B.- A CONCEPTUAL FRAMEWORK..............................11

1. The Scheduling Environment................................ 11

2.The Scheduling Decision....................................13

a. Constraints..16

b. Goals..17

C. GENERIC MODEL DEVELOPMENT...........................1IS

D. A SPECIFIC OPTIMIZATION MODEL......................... 19

I. The Ship Scheduling Problem............................... 120

2. The Underlying -Mathematical Model...........................22

E. A GENERIC SCHEDULING MODEL.........................

1. The Environment..23

a. Time..23

b. Resources...23

c. Tasks .. 23

d. Attributes...24

e. Grouping ... 2.4

2. Generic Decision Factors...................................25

a. Filters...25

b. Cost Factors...27

c. Constraints..29

iv

F. SU M M A R Y ... 29

III, INTERFACE DESIGN 30

A . G EN ERA L ... 30

B. THE DSS VIEW OF DIALOG 31

1. A ction Language .. 32

a. Input D evices 32

b. The "Production Paradox" 32

c. Degree of Interaction 34

d. Program Com plexity 34

e. Flexibility 35

f. D ialog Style ... 35

g. Consistency 36

h. .M aintain User Orientation 36

2. Presentation Language 36

a. O utput D evices 36

b. D isplay of T ext 37

c. Display of Quantitative Data 3S

d. F eedback 40

e. General Display Techniques 41

3. K now ledge Base ... 41

a. Minimize Human Memory Demands 41

b. The "Assimilation Paradox" 42

c. O nline H elp ... 43

C. DIRECT MANIPULATION 43

D. GRAPHICAL USER INTERFACES (GUI) 45

1. G en eral . 45

2. The Star Interface .. 46

a. The Primary Goal and Assumptions 46

b. D esign A pproach 47

E. A LOOK AT TOOLS .. 49

1. Object-Oriented Programming (OOP) 49

2. T oolkits . 50

3. User-Interface Managemen. Systems (UIMS) 50

F. SU.MMA1-Y 51

V

IV. PROTOTYPE DESIGN AND IMPLEMENTATION 52

A. THE PROTOTYPING APPROACH 52

1. Advantages of Prototyping 52

2. Types of Prototypes 53

a. Revolutionary (Throwaway) Versus Evolutionar 53

b. Interface Only (Rapid) Versus Whole System 53

c. Intermittent Versus Continuous 53

B. NEXT INTERFACE CONCEPTS 54

1. A ction Paradigm s .. 54

a. D irect M anipulation 54

b. C ontrol A ction 55

c. Target Selection 55

d. T ool Selection 55

2. Interface Builder ... 55

C. THE SCHEDULING INTERFACE 56

1. Scope of Im plem entation 56

2. G eneral Principles .. 57

a. M ininize Data Entry Burden 57

b. Provide Maximum Model Information and Control 57

c. Left to Right, Top to Bottom 57

d. White for Selection and Input Values 57

e. W indow Specific Help 57

f. Save The Visible Information Only 58

g. Develop and Reuse Standard Interface Objects 5S

3. Functional D escriptions 5S

a. G etting Started 5S

b. Scheduling Environment 58

c. Resource Group Assignments 61

d. Resource Attribute Assignment 61

e. Task Group Assignments 64

f. Task Attribute A ssignment 64

g. N eed Identification 64

h. Needed Task A ttributes 64

i. Direct Assignments (9

j. G oal Identification 69

k. Schedule Presentation..................................69

D. SUMMARY ... 72

V. OBSERVATIONS AND RECOMMENDATION'S..................... 73

A. OBSERVATIONS...73

1. Prototyping is an Effective Methodology........................73

2. Prototype Design is not Easy................................ 73

3. Reusable Objects Greatly Improve Productivity 73

B. ADDITIONAL RESEARCH AND DEVELOPMENT................ 74

1. Extend TaskMaster to Schedule Output........................ 74

2.Develop the Database Subsystem.............................174

3. Combine with the CPM Model...............................74

C. CONCLUSION .. 75

LIST OF REFERENCES ... 76

INITIAL DISTRIBUTION LIST..................................... 80

LIST OF FIGURES

Figure 1. Three Dimensional Gannt Chart 14

Figure 2. Relational Diagram for Scheduling Framework 15
Figure 3. Allocation Constraints 17

Figure 4. Sequencing Constraints 18
Figure 5. Schematic Representation of a User Interface 32
Figure 6. M enus and Title Panel 59
Figure 7. Environment W indow 60

Figure 8. Resource Group W indow 62
Figure 9. Resource Attributes W indow 63
Figure 10. Task Group W indow 65
Fi2ure 11. Task Attributes W indow 66

Figure 12. Need Identification W indow 67

Figure 13. Needed Task Attributes Window 68
Figure 14. Lock-ins W indow .. 70

Figure 15. G oals W indow .. 71

viii

LIST OF TABLES

Table 1. CURRENT GRAPHICAL USER INTERFACES................. 46

Table 2. INTERFACE CONCEPTS.................................. 47

ix

1. INTRODUCTION

Within the computer industry, the 19 80's may very well be characterized as the

decade of the end-user. This period has seen the shift of computing power away from

large centralized facilities controlled by computer professionals, to desktop computers

operated by a wide variety of users, many with limited formal computer training. The

operating systems and software that were developed during this period were increasingly

oriented to non-computer specialists. The terms "user-friendly" and "user-interface" be-

came common buzzwords within the computer industry. The use of computing power

by an expanded group of users has increased the demand for powerful applications in a

variety of disciplines. Tremendous adv nces in compater hardware have also contrib-

uted to the demand for software applications which take advantage of these hardware

capabilit'es. As a result of these changes, new markets are developing for a variety of

computer apTIications that were once linitcd to select audiences. A number of these

software applications will undoubtably come from the field of Management

Science Operations Research (MS OR). Although some software packages have been

developed for MS OR, they have vet to gain widespread acceptance.

A. THE USER

Every tool for humans must address at least two aspects within its design. The first

is concerned with the tz:,k that the tool is intended to perform. If the tool is a hanmmer,

concerns of this type might include the size, weight, and hardness of the head as they

relate to the ability to drive nails. The second aspect is concerned with the capabilities

of the typical person using the tool. Again using thT hammer for illustration, the focus

would be on the handle, the way it fits the user's hand and the amount of mechanical

advantage afforded by its length. Obviously if the typical user had no hands, hanmers

would be designed significantly different.

Computer software as well must address both thcse aspects if it is to be a useful and

effective tool. The focus of this thesis is on that second aspect. the "user-tool" interface.

Of great importance to the design of all software is the identification of the target audi-

ence or end-user. The application that is designed must take into account the abilities

of those end-users. Therefore, one of the first questions that must be answered is. "who

are the end-users of this software, and what arc their capabilities?"

1. The Traditional User

Historically MS;OR computer applications were directed primarily at the OR

specialist as the end-user. The user interfaces to these applications presupposed con-

siderable understanding of the mathematical models upon which they were based. The

interface was generally an afterthought, addcd on top of the model only after it was

completed. As a result, the interface technology employed by most of these applications

was rudimentary at best, requiring not only a thorough understanding of the model, but.

often an intimat, understanding of the computer program as well. Frequently these

applications required special formatting of data for input and produced output that re-

quired reformatting before delivery to the manager. Firms wishing to employ these tools

were required to work through an MS, OR department which developed and operated

the applications. In general., only those who were MS. OR specialists possessed the

requisite understanding of the mathematical and computer shorthand employed by these

applications. This approach greatly limited the use of MS OR solution techniques.

Many firms could not afford to employ their own MS-OR specialist,. Others were na-

turally reluctant to apply a tool that they did not begin to understand. This reluctance

is further demonstrated in this quotation,

"'Historv shows that model based assistance is used all too infrequently by managers
and poiicy-makers. Often this is the cave because available modeling systems are
incomprehensible to non-specialists in management science operations research
(MS OR). Managers may feel overly dependent on these MS OR practitioners who
more fully understand the uaderlving concepts of th. modeline systems. Manacers
avoid this dependency by avoiding the very modeling systems that could enhance
their decision-making capabilities." [Ref. 1: p. 31

As Woolsey says. "people would rather live with a problem they cannot solve than ac-

cept a solution they cannot understand" [Ref. 2: p. 169].

Working through a specialist not only proved to be undesirable, but also intro-

duced all the inefficiencies common to most intermediary relationships. The primary

problems resulted at the interface which was created between the person who understood

the specifiLs of the problem and the person who understood the models. This interface

was exercised a minimum of two times and more commonly many more. Each trans-

lation from one domain to Lhe other was generally cumbersome and fraught with op-

portunities for errors resulting from misinterpretation.

This traditional approach, especially in the light of the current trends in com-

puting. is as unnecessary as it is undesirable. There is currently the potential for con-

verting a number of MS OR applications into software packages which are capable of

being used directly by the people who depend on the output information. This will.

however, require an entirely different approach to the development of MS OR applica-

tion software. The need for this new approach is further demonstrated through the use

of an analogy which follows.

2. An Analogy

A mathematical model can in many ways be compared to an automobile engine.

The mechanic is interested in the technical capability of the engine in much the same

way that the MS OR specialist is interested in the features of a given model. Most users

however, are less concerned with the specifics of the engine and more concerned with the

way it functions as part of a complete car. Very few operators of cars understand all the

intricacies of the engine's operation. Rather, the capabilities of the engine have been

extended to user-oriented objects within the automobile that can be used to exploit its

power. Those things which are attached to the engine enabling it to perform a specific

function are analogous with the user interface. Many mathematical models today exist

as little more than engines which evoke the admiration of other mechanics who under-

stand and appreciate their elegance. Most contain such basic interfaces that they can

only be understood and operated by those with special training and hence often the ac-

tual user must work through a separate MSOR department to use a model. This is

analogous to designing cars that require mechanics as chauffeurs.

While it is probable that there will always be research and development into new

and better models just as there is into engines, it is time that some of these models be

developed into "stock" rather than just "custom" applications. Not only will this provide

access to a wider audience, it will also provide needed feedback to the design process.

There are some objections to the adaptation of models for general use. Often

these objections arc based upon valid concerns about abuse or misuse of models stem-

ring from a lack of understanding on the part of the user. Similar concerns were raised

during the early days of the automobile. The development of any powerful tool intro-

duces a risk associated with its possible misuse. If the tool, however, has application to

a broad base of users, the benefits usually outweigh the risks. Further, these risks should

encourage the designers to incorporate into their designs aids and mechanisms which

encourage safe and informed user operation. One of the keys to minimizing this risk is

to build user-oriented representations into the interface that facilitate proper use and

educate the user in the solution methodology.

A movement is beginning which encourages the development of MS OR models

into end-user applications. '[his movement is being spearheaded by managers who have

3

experienced firsthand the power of mathematical models and OR practitioners who rec-

ognize this as the future of OR. From their inception the "mechanics" of OR have

concerned themselves almost exclusively with the design and construction of newer and

more powerful "engines". In the past decade there has been an increasing awareness that

these "engines" must be incorporated into fully functioning automobiles if they are ever

going to go anywhere.

3. The Proposed User

Once it has been accepted that certain MS/OR models can be effectively used

directly by other than MS.OR specialists, it remains to define more specifically the ca-

pabilities of this audience. There are two principle assumptions which must be made

regarding the managers and decision makers proposed here as the end-users.

The first assumption concerns computer literacy. Recognizing that this oppor-

tunity for direct usage has been facilitated in part by the proliferation of personal or

desktop computers, it is natural to presuppose that the user is able to use these com-

puters as a platform for these applications. The user in this instance is assumed to have

a good understanding of the basic operations associated with a computer and in partic-

ular be able to use a graphical user interface. The graphical interface itself is an out-

growth of an end-user focus at the level of the operating system. Later in the paper the

reasons for selection of this type of interface will be discussed more fully. This type of

interface is clearly the wave of the future and is being implemented on all major hard-

ware platforms. The most important benefit in this discussion is the ease with which the

necessary degree of computer literacy is attained. Willingness on the part of the decision

maker to use a computer is probably the largest hurdle. With each succeeding gener-

ation receiving greater exposure to computers and at earlier ages, this hurdle is clearly

diminishing.

The second assumption is that the user is familiar with the details of the specific

problem being addressed. If the persons operating the system don't understand the na-

ture of the problem they are not in the target audience, for the primary reason for pro-

posing an application of this sort is to bring together the specific knowledge of the

problem domain and the tool used in its solution. It is therefore fundamental to the

design of the application that this problem domain knowledge, when coupled with basic

computer literacy, be sufficient for use of the application. The system itself must be

capable of augmenting this domain knowledge with any additional insight required in the

solution process. It is also important to note at this point that these applications will

necessarily rely more heavily on an understanding of the basic structure of the problem

4

than on the particulars. By focusing on the underlying structure an application is able

to address a much broader base of problem domains. This generic aspect is addressed

further in the "Scheduling" paragraph below.

B. A DSS APPROACH

The concept of putting models directly in the hands of the decision maker is not

original. A whole discipline within the Information Sciences committed to developing

systems for the decision maker has begun to flourish in the past decade. These software

systems are referred to as Decision Support Systems (DSS). The following is a widely

accepted definiticn of a DSS:

"Decision Support Systems (DSS) are interactive computer based aids designed to
assist managers in complex tasks requiring human judgment. The aim of such sys-
tems is to support and improve a decision process." [Ref. 3: p. 21]

The increasing popularity of DSS is certainly related to the decentralization of

computing power and the related growth in end-user computing. The power of a DSS

is in its ability to bring together data and sophisticated models in a single package that

can be used directly by decision makers to address their problems.

The OR MS community recognizing the direction of computing in recent years has

taker steps to align itself more closely with the user-oriented field of Decision Support

Systems (DSS). This strategy is documented in an article entitled "Can MS OR Evolve

Fast Enough?", based upon the plenary address given by Geoffrion to the EURO V -

TI.MS XXV International Meeting in 1982. Geoffrion identified the following two ad-

vantages which characterize the DSS style [Ref. 4: p. 211:

* "It places a high value on flexibility of system use and adaptability to changing user
needs."

• "It puts the user first and the underlying technology second, with particularly
careful attention to the user interface."

A similar theme is echoed by Jones who observes that, "One of the principle con-

tributions of the work of DSS has been its emphasis not on algorithms (unlike OR), but

on the infrastructure, e.g., the representations, surrounding the problem solving process"

[Ref. 5: p. 892].

From another perspective a DSS is nothing more than the next logical extension in

the development of software systems. Software has always in some way supported de-

cision processes. The DSS simply integrates into the software more of those functions

which historically were performed externally by the human user.

The DSS can be thought of as containing three interrelated technical capabilities

which define three major components or subsystems [Ref. 6].

" The Dialog Subsystem

" The Data Subsystem

" The Model Subsystem

The model component includes decision models that can be used to analyze prob-

lems of interest to the decision maker. This is the portion of the application which

contains the particular mathematical model(s) used in the decision process. In the pre-

vious analogy this would be the "engine". Obviously, a model should be selected which

is well suited to the type of problem the decision maker is facing. Again resorting to the

analogy, it is nice to have a "powerful engine under the hood".

The data component manages the raw material or "fuel" used in the decision making

process. It includes a data base for storing the data and a management system which

oversees creation, maintenance, access, update, and protection of the data. In much of

the DSS literature the data component includes more data than is specifically required

by the model, often providing access to the entire corporate database. This thesis will

take a more restricted view of the data component focusing only on that data required

to support the underlying MS, OR model. The way the data is stored is also referred to

as a model. The particular model this paper will assume is the "relational model". This

particular model is widely accepted as one of the most functional, addressing the

broadest range of naturally occurring relationships. Within the relational model data is
viewed as a series of two dimensional tables of related information. Each row is referred

to as a "tuple" and each column as a "attribute". Each individual value is a "field". Be-

vond this basic understanding very little time will be spent on the discussion of this

component.

This thesis will emphasize the third component, the dialog subsystem. The dialog

component is the most critical in supporting the direct use of the system by the decision

maker. This component may be viewed as the part of the system that the user works

with to exploit the capabilities of the other two components. For this reason it is un-

derstandable that, "from the DSS users' point of view, the Dialog is the System" [Ref. 6:

p. 29]. The importance of the dialog subsystem in model-based DSSs is shown in this

quote from Brennan and Elam,

"The DSS movement has highlighted the fact that effective decision making aided
by models requires a software environment that includes more than a sophisticated

6

solver. It requires a user interface that allows managers to define models and to
view their results in a framework-a conceptual model-that makes sense to them. The
widespread acceptance of micro-based speadsheet packages (e.g., Lotus 1-2-3) is in
part due to the fact that these software packages allow the user to work in a mod-
eling environment that is a familiar one. The lack of user-oriented interfaces as
opposed to technically-oriented interfaces has resulted in the less than enthusiastic
response of decision makers who feel, justifiably, that they have no means of con-
trolling or understanding the models being used." [Ref. 7: p. 131]

The importance of the user interface has been clearly evidenced within the marketplace.

Some of the most significant changes and trends in commercial software and operating

systems deal with the user interface. During the past several years there has been a

significant migration to Graphical User Interfaces (GUI) and it is anticipated that, be-

fore too long, most operating systems will employ interfaces of this type. Perhaps in

part fueled by these advances, users have come to expect and demand interfaces which

are more intuitive and easier to use. Even the most powerful software package is poorly

received if the interface to it is poorly constructed. On the other hand those packages

which provide an easy to use interface along with powerful capabilities become industry

standards. Clearly one of the earliest examples of this kind of success was the Lotus

1-2-3 spreadsheet. Later in this paper, the major components of the dialog experience

will be identified and some principles for design will be developed.

It is often difficult to neatly separate a DSS into these three parts. Much of the

impact of the DSS approach has been based upon the notion of balanced integration

of dialog, data, and modeling technologies into one complete and powerful system.

Therefore, even though the focus will be on the dialog component, it will be necessary

to consider certain aspects of the other two. Traditionally, the design of these systems

focused primarily on the other two components. The objective here will be to seamlessly

integrate a more advanced technology in interface design with the previously developed

capabilities.

C. THE SCHEDULING DOMAIN

Many DSSs have within them solution models from the fields of Management Sci-

ence and Operations Research. Some of the first problems these disciplines sought to

address were scheduling problems.

In an environment which increasing competes for scarce resources, the efficient al-

location and scheduling of resources is becoming essential for survival. Not only is this

true in the private sector, but, in government as well. In government and in larger

commercial and industrial organizations, the complexity and scope of many schedi,'lng

7

problems makes their solution intractable by the unaided human mind. These large and

complicated scheduling problems are ideal candidates for the computational power of-

fered by present day computers.

Over the past several decades, Operations Research has successfully applied a num-

ber of sophisticated and powerful models to the solution of certain classes of scheduling

problems, yet few have gained widespread acceptance. For the reasons previously dis-

cussed, managers are often reluctant to embrace these model-based solutions, choosing

instead manual solution methods which are time consuming and inexact.

By building scheduling applications directly for the end-user which incorporate so-

phisticated, yet understandable interfaces, it is anticipated that much of this reluctance

will be overcome. The success of this approach has already been demonstrated by soft-

ware packages using Critical Path Method (CPM) and Program Evaluation and Review

Technique (PERT) models. Software packages have been developed for these techniques

of scheduling which employ user-oriented interfaces enabling direct use by other than

OR specialists. It is suggested that the same technique be used to extend other sched-

uling models directly to the user.

This approach is both specific and generic simultaneously. It is specific in that it

contains a particular underlying algorithm based upon a specific mathematical model.

On the other hand, it is proposed that the interface be designed in such a manner so as

to permit a whole class of problems. In this respect they can be considered to be generic.

This generic capability exist in the majority of CPM, PERT applications. The interface

of these software programs have been designed to accommodate the specifics of any

problem to which these decision factors can be applied. CPM, PERT software can be

applied with equal effectiveness to the scheduling of ship construction and building

construction. This can be characterized as the "engineering" as opposed to the "artistic"

approach. The benefit of this approach is that it develops structures that are extensible

to a variety of specific situations. It recognizes that within the scheduling domain the

factors influencing scheduling decisions are often not unique to a single problem. The

underlying algorithm or model remains unchanged. Only the user interface is affected.

This enables these applications to be used within a wide variety of problem domains.

This obviously extends the breadth of their appeal and has no doubt contributed to their

success. This approach to building scheduling systems has recently been supported in

a paper presented to the 1989 meeting of ORSATIMS. In that paper the authors make

the following observation.

8

With traditionally developed systems, the potential market was users with exactiv
the same problem. But, with problem-independent scheduling systems, the end user
market is increased to include those with a similar problem. [Ref. 8: p. 2]

This is also consistent with the DSS approach which is often characterized by its em-

phasis on adaptability. A DSS generally "...places a high value on the flexibility of sys-

tem use and adaptability to changing user needs" [Ref. 9: p. 211. To the degree possible,

this same emphasis on adaptability should be used in the development of other sched-

uling applications.

There are a couple of powerful scheduling models that have been developed for the

Navy in recent years which have yet to be implemented. This thesis will focus on one

that was designed by Wing for the inter-deployment scheduling of surface combatants

called "SURFSKED". [Ref. 10] This application focuses on one particular problem,

however, the underlying algorithm and math model contain some useful constructs

which could be applied to a significantly broad class of problems. The author himself

acknowledges that the "...method and model can be used by submarine, air, and marine

units" [Ref. 10: p. 61] in addition to scheduling ships. The underlying algorithm and

model will be retained, while adapting the interface into one which is simple and generic.

This will result in the creation of a problem-independent scheduling model which can

be used directly by end-users to solve a variety of similar scheduling problems from di-

verse domains. The present interface building tools offer the ability to achieve this goal

with unprecedented ease and with impressive results.

D. THESIS APPROACH

This thesis looks at scheduling solution models developed by OR and the prospect

of adapting these solutions into Decision Support Systems (DSS) which can be used di-

rectly by managers and decision makers who are not OR specialists. The most signif-

icant effect of this type of adaptation is upon that portion of the DSS dealing with the

user interface and so this paper will necessarily focus on that aspect.

One objective of this thesis is to encourage decision makers, who have been hitherto

reluctant, to embrace these scheduling models. The focus will be on this new group of

end-users. This is a relatively untapped, direct market for OR modeling tools. It is

suggested that this market can be reached by emphasizing the user interface in the de-

velopment of scheduling DSS. Further, it is anticipated that by harnessing the power

of a sophisticated mathematical modcl for use by the people familiar with scheduling,

better scheduling solutions will result.

9
9'

A second, and related objective, is to encourage those within the OR discipline who

design these models to place more emphasis on their development for end-users who are

not OR specialists. Even Wing, the author of SURFSKED recognized that the model

needed to be modified to make it into an "end-user product" [Ref. 10: p. 61]. This thesis

will demonstrates the feasibility of building an interface which is applicable to end-users

in a variety of problem domains.

The remainder of the thesis is organized as follows.

Chapter II explores the nature of the scheduling problem and establishes a concep-

tual framework for scheduling. The chapter will then examine Wing's SURFSKED

model, and from that develop a generic problem class that can be solved using the same

basic model. This generic model will later form the basis of a prototype interface.

Chapter III will look at interface design considerations and their application to the

construction of the dialog component of a scheduling DSS. The various aspects of the

dialog experience will be explored for principles to guide the design of the prototype

interface. Special emphasis is placed on good graphical technique, direct manipulation

and other current human-computer interaction concepts.

Chapter IV will discuss the use of prototyping as a methodology for development

of software systems and present Taskl aster, a prototype interface for the input of data

and constraints to a generic scheduling DSS.

Finally, Chapter V will present some of the observations that were made during the

design and development of TaskAlaster and make recommendations for future related

study.

10

II. SCHEDULING

A. GENERAL

No one knows for certain when man first began to schedule, but clearly scheduling
has its roots very early in history. Scheduling is an inseparable part of the daily activity

of human planning. The need for scheduling is predicated upon the finiteness or scarcity

of the items to be scheduled. The person engaged in scheduling is concerned with effi-

cient use of those resources which are perceived to be the most scarce. Time itself is
often limited and therefore viewed as a scarce resource which must be efficiently used.
A good schedule assigns the limited resources according to goals and objectives pre-

scribed by the scheduler. The measure of "goodness" is the degree to which those ob-
jectives are achieved and the schedule with the highest measure is considered to be

optimal.
The goal of this chapter is to develop and present a generic scheduling model.

However, in order to achieve that objective, it is first necessary to provide the reader
with a basic understanding of the scheduling problem domain. This first step will focus

on the development of a conceptual framework which encompasses the broadest scope

of scheduling problems. Here the basic components of the scheduling problem will be
defined and the various facets of the scheduling decision itself will be identified. Once

that has been done, a particular scheduling problem and solution methodology will be
explored in the light of the developed framework. Finally, the specific problem will be
adapted into a generic and broadly applicable scheduling model which retains the basic

solution methodology and underlying mathematical model of the specific problem.

B. A CONCEPTUAL FRAMEWORK
1. The Scheduling Environment

In order to understand the basic nature of the scheduling problem it is impor-
tant to adopt a working definition of scheduling. Scheduling may be defined very simply
as, "...the allocation of resources over time to perform a collection of tasks" [Ref. 11: p.

21. This definition was selected because it identifies three different primary objects or
entities that are common to a majority of scheduling problems; resources, tasks, and

time.

Certain characteristics of resources, tasks, and time vary with the problem do-

main. Later in the development of a generic problem each of the three dimensions will

II

be defined more rigorously. The following abbreviated definitions are provided to es-

tablish a common basis of understanding because other terms are often used within

specific problem domains.

Time provides the backdrop for most schedules. Unlike the other two dimen-

sions it is by nature continuous rather than discrete. Most scheduling problems establish

a period of time or window of time which limits the scope of the scheduling problem.

Historically, because much scheduling work was performed in manufacturing,

resources were "machines" and much of the scheduling literature continues to uses this

term to describe resources. In the conceptual sc'eduling framework, resources are the

basic elements that are used by, required by, or satisfied by, tasks. Resources normally

have associated with them characteristics which restrict their assignment to tasks and

times.

The manufacturing environment has historically referred to tasks as "jobs" or

"operations". Other names commonly given to tasks are "events" and "activities". Tasks

are activities which require, use, or service resources for a particular time period. Tasks,

like resources commonly have characteristics which dictate the resources and times that

may be associated with them. The definition of task is the most critical to the concep-

tual framework developed within this chapter. This is because there are at least two

other definitions which are predominant within scheduling literature. One definition

associates a specific time period with each task. The other defines tasks to include the

specific resources which they require. Both of these definitions are rooted in simplifi-

cations of the scheduling problem which will be discussed further in the following section

dealing with the scheduling decision. In the framework developed here, the resources

and timeframe that may be associated with a particular task are left as part of the

scheduling decision rather than being included within the definition of the task. By

providing a more basic definition of tasks this conceptual framework can accommodate

both the simplifications as well as more complicated problems where these simplifi-

cations aren't applicable.

The terms object and entity were purposely used above to describe resources,

tasks and time because of their use in other disciplines to describe the structure of

models, databases, and interfaces. The use of these terms here provides insight into the

role these three scheduling components have in the model, the interface, and the data-

base. The objective is to provide a synergy of some of the latest techniques in each of

the three DSS supporting disciplines.

12

The terms object and object-oriented have gained increasing popularity within

both computer and information sciences. The term has been applied both in interface

design and in relational database design. In the latter, it is used to describe "...a stored

data representation of an entity of concern to the user" [Ref. 12: p. xix]. By identifying

these three basic objects we establish not only a framework for the model but also for

the organization of the underlying data as well. Later, in the discussion of interface de-

sign, graphical user interfaces will be discussed which make use of graphical objects and

object-oriented programming.

Within the field of modeling, an attempt has been made by Geoffrion to identify

a structure within solution models. His work of"Structured Modeling" breaks the model

into a hierarchy composed of various types of "entities". At the root of the hierarchy

are the "primitive entities" which he defines as, "...elements (which) have no associated

value and generally represent things or concepts postulated as primitives of the model"

[Ref. 9: p. 553]. Resources, tasks, and time, can be thought of as the primitive entities

of a generalized scheduling model. By identifying these three as primitive entities, a

framework is established which can be used to compare, and ideally combine, different

scheduling models.

These three can also be thought of conceptually as dimensions. In this way the

scheduling problem can be viewed as a three-dimensional space defined by axes of tasks,

resources, and time. This dimensional connotation can provide insight into the scope

of the specific scheduling problem being contemplated. The size of the particular prob-
lem domain is represented by the space with dimensions corresponding to the numbers

of resources and tasks, and the time period under consideration. Generally the larger the

space, the more complex the problem. This connotation also provides a method for

visualizing schedules. A schedule represents selected portions within the domain space

that identifv the resources and tasks assigned together in time. A graphical depiction

of this scheduling framework can be seen in the three dimensional Gantt Chart devel-

oped by Jones [Ref. 5: pp. 891-903]. A slightly modified version of this graphic is shown

in Figure 1.
2. The Scheduling Decision

Having defined the scheduling framework as consisting of three objects, the

scheduling decision is one that addresses the combination of these three into time
scheduled and "resourced" events.

In relational database terminology, schedules represent association objects. An
association object has been defined by Dolan & Kroenke as, "an object that documents

13

Resources

~Tasks

Resource

Time

Figure 1. Three Dimensional Gannt Chart

Source: Adapted from [Ref. 5]

a relationship between two or more other objects" [Ref. 12: p. 1951. Schedules in this

sense document the relationship between the three objects of tasks, resources, and time.

A relational diagram depicting this relationship is shown in I'igure 2. A completed

schedule then represents a set of linking relationships. IFor example, a schedule might

assign student A and student B (resources) to Chemistry 101 (task) during the fall

quarter (time).

It should be noted that not all problems appear to be concerned with all three

of these dimensions. This was previously alluded to in the definition of tasks. The

composition of the primitives of a given scheduling model can be useful in providing

insight into the complexity of both the decision and solution methodology. Certainly

the most complex class of problems involves decisions about linking all three of these

objects. I lowever, many current solution models do not address that degree of comn-

plexity, but rather choose to combine two of the objects fiom the outset in order o

14

Resource Task Time

*" Resource Name I Task Name - Time Period

\Scheduled Event

Task Name *Time Period *Resource Name

. Key

0 Ontinnal
r ,tory

Figure 2. Relational Diagram for Scheduling Framie)ork

simplify the problem. A common simplification is to combine tasks and time. Each task

is identified with a particular time period and the problem becomes simply a matter of

allocating (or]iking) resources to these time-bound tasks. The second common sime-

plification involves tasks which are by definition rigidly linked to specific resources.

Good examples of this type of simplification are demonstrated in the popular PF RT and

CIPl scheduling solution techniques which focus primarily on assigning tasks with their

embedded resources to particular time periods. Both of thcse approaches, by combining

two of the basic objects, have the effect of removing one degree of freedom from the

overall scheduling decision. By keeping all three objects initially separate this framework

is able to address the larger problem domain that includes the.,e two smaller subsets.

Where there are few resources and tasks and the time period under consider-

ation is small, or one of the previously discussed simplifications exist, the scheduling

problem can be simple and intuitive, lending itself to manual solution methods. A large

number of scheduling activities performed today are performed manually using a trail

and error application of heuristics to arrive at an acceptable scLedule. As the size and

scope of the scheduling problem increases this particular method becomes increasingly

more time and manpower intensive and offers no assurance that the selected schedule

represents the best solution. In recent years the larger and more complex problems have

been solved predominantly by the application if mathematical optimi/ation models run

15

on computers. These apply "...a quantitative approach that begins with the translation

of decision-making goals into an exr':cit objective function and decision-making re-

strictions into explicit constraints" [Ref. 11: p. 51. From this statement we identify two

basic components influencing the decision process, goals and constraints. These two

will now be discussed in more uepth.

a. Constraints

Constraints may be thought of as the rules which govern the specific

scheduling problem. They are inviolable, that is, schedules that don't conform are not

even considered. Constraints remove from consideration certain combinations of the

three primary objects. They may do this explicitly by identifying those combinations

which are inappropriate, or this may be done implicitly by identifying specific charac-

teristics which must be met by all acceptable combinations. In this way, constraints

reduce the range of possible schedule solutions to a smaller set of "feasible" schedules.

Baker has identifieC two popular categories of constraints, allocation and

sequencing constraints. Here again the effect of the two predominant simplifications

discussed earlier -I,: be seen. Where tasks are defined to include specific times the de-

cision process focuses on the question, "...which resources will be allocated to perform

each task?" The constraints which restrict these assignments are allocation constraints.

A typical allocation constraint will specify the types and numbers of resources required

by a specific task, or viewed from the other perspective, the types of tasks that are re-

quired by the resources. Referring to Figure 3, these constraints identify those links

which are feasible between each task/time combination aid resource.

In the second type of simplification, where tasks are defined to include

specific resources, the only decisions required are those which ask, "...when will each task

be performed?" These time assignments are commonly restricted by sequencing con-

straints. Referring to Figure 4, these constraints identify those links which are feasible

between each taskiresources combination and time. The most common sequencing

constraint involves prerequisite relationships, where the start of a task is contingent

upon the start or completion of one or more other tasks. A model that is based upon

the more genexalized framework is able to accommodate the constraints associated with

these simplifications as well as ones which are more complex.

It is appropriate to mention at this point that there is a certain duality that

exists in the scheduling problem between resources and tasks. The scheduler can allo-

cate resources to tasks or, tasks to resources and it is not uncommon to hear both ex-

pressions used within scheduling literature. This duality is normally a characteristic of

16

Task/Time Resource

Task Name ITime Period Resource Name ..

ALLOCATION CONSTRAINTS

Resource Name Task Name I Key

Figure 3. Allocation Constraints

the way the scheduler views the problem and more specifically the perceived scarcity of

either the tasks or the resources. The goals and constraints which apply to a specific

problem have a direct influence upon the direction of allocation. The direction of the

allocation is often translated into a specific solution methodology. The net result, either

way. is a schedule which links resources and tasks together in time.

b. Goals

Goals provide the basis for assigning value to feasible schedules for the

purpose of identifying a particular schedule which is "optimal". Put another way., the

optimal schedule is the one which most effectively addresses the stated goal or goals.

The stated goal of most scheduling problems is to minimize total cost, recognizing that

resource allocation CeICsions often have associated costs. These costs are commonly

expressed in monetary terms, money being a widely used and uniform measure of relative

value. When monetary terms are inappropriate, penalty functions can be incorporated

into the objective function which capture the relative effect of failing to achieve the

various goals. Regardless of the metric used to evaluate relative value, there is an

underlying assumption that all the significant cost factors can be identified and quanti-

fied beforehand. This is usually a very difficult task. Baker has identified three types

of decision-making goals that are prevalent in scheduling [Ref. 11: p. 5]:

17

Task/Resource Time

Task Name I Resource Name Time Period@I
SEQUENCING CONSTRAINTS

*Task Name *Time Period 1 .Key

Figure 4. Sequencing Constraints

* Efficient use of resources.

* Rapid response to demands.

* Close conformance to prescribed deadlines.

Special care must be taken to identify scheduling goals which accurately
reflect the true nature of the problem. Failure in this regard will result in the production

of a schedule which is mathematically optimal but realistically sub-optimal. Here the

old axiom of "garbage in, garbage out" is especially true.

C. GENERIC MODEL DEVELOPMENT

The ideal scheduling tool would be one that handles a wide spectrum of problems,
containing within it a number of mathematical models. Such a tool would allow the user

to enter the unique characteristics of a specific problem into a generic scheduling inter-
face environment or "shell". The system would then select the most effective model or
combination of models and provide an optimal solution to the problem. This approach

recognizes the applicability of models to more than one problem domain. This same

observation was made by Dolk as evidenced in the following statement:

If a model has proven useful in a decision situation, then we may assume it may
prove useful in similar or recurring- situations. Given the high relative cost of
building models, it makes more sense to modify existing models, if available, than

18

to start from scratch. Equally important, models may have transfer value so that a
model developed in one context may be applicable to different situations as well.
[Ref. 13: p. 38]

The process of combining models and providing the intelligence to select the appropriate

one (or combination) is a daunting task. The question is, "how can we pursue this

eventual goal in smaller, more practical steps?" The answer may exist partially within

the conceptual framework which has been developed. Within that framework two sep-

arate aspects were identified; the environment and the decision. The environment, as

defined, is generic and is applicable to a wide variety of problems. Further, the envi-

ronment is generally model-independent. During the development of the environment

it was pointed out how the two most widely accepted classes of models are accommo-

dated within this framework. It is within the decision area that a system becomes model

specific, for certain models have been developed to model certain "decision factors" re-

lated to scheduling. The suggested approach to use in the development of these decision

factors is one which is generic and modular. Using this approach, a particular solution

can be analyzed to identify a set of generic decision 'factors which it addresses. This

approach is similar to the "Problem-Independent Scheduling Systems" paper presented

by Loyola, Reilly, and Werntz to the 19S9 meeting of ORSA."TIMS:

"Traditionally, scheduling systems have been built trying to directly model a prob-
lem. But we feel that the development of more generic systems which we will call
problem-independent scheduling systems, can yield greater success." [Ref. 8: p. 11

If success of a model is based upon widespread acceptance and usage, the greatest

successes in OR scheduling models are the Critical Path Method (CPM) and Planned

Evaluation and Review Technique (PERT) scheduling models. These two combined top

the list of accepted OR models. These are generic scheduling models which are capable

of accormnodating a wide variety of problems with the specific characteristic that they

model. The goal in the remainder of this chapter will be to develop another generic or

problem-independent scheduler. Rather than start from scratch, a customized schedule

solution model will be explored and then adapted into a generic scheduling model. The

model that is selected must be adaptable to a significantly large class of problems.

D. A SPECIFIC OPTIMIZATION MODEL

The approach used in this paper to arrive at a generic scheduling model is much the

same as that used by, Loyola et al. First a particular problem was selected, and then

analyzed with the intention of developing a class of generic problems. It is important

19

to note that "building a system which would effectively solve all scheduling problems

(complete independence) is presently infeasible" [Ref. 8: p. 21. However, using the

framework developed in the earlier part of this chapter, a specific problem may be se-

lected which addresses a broad range of problems. In order to fully exploit that frame-

work a problem which addresses all three components; resources, tasks and time, was

selected.

1. The Ship Scheduling Problem

The particular problem solution is one modeled by Wing [Ref. 10]. It involves

inter-deployment scheduling of Navy surface combatants during a 13 week quarter. The

name given to this computerized solution model is SURFSKED, and that is how this

thesis will refer to it as well. SURFSKED was constructed to demonstrate the feasibility

of applying optimization methods to solving this complex, hitherto manually solved,

problem. The particular methodology involves mixed-integer linear programming and

set-partiticling to generate an optimal solution. The model proceeds through three

basic steps.

The first step is to generate a set of "candidate" schedules for each ship. This

is done using a "generator" which consists of a Fortran program which enumerates only

those schedules which meet certain user specified criteria. These criteria are essentially

constraints such as those discussed in the conceptual framework. The object of this step

is to eliminate from consideration those schedules which are theoretically possible but

impractical in this specific scheduling environment. Rather than generating all possible

schedules and allowing the linear program to eliminate those which are infeasible, this

procedure uses the constraints to generate only those schedules which are feasible for

input to the linear programming solver. To distinguish these constraining factors from

the constraints used within the linear program itself, the term "filter" will be used when

referencing them. The following are the particular filters which are used by SURFSKED

to determine whether a schedule for a particular ship is feasible:

" Filter 1. A task must be needed by the particular ship.

" Filter 2. All the prerequisites for a task must be completed by a ship before that
task can be scheduled for that ship.

" Filter 3. Tasks may only be scheduled for a ship concurrently with compatible
tasks.

* Filter 4. Tasks may only be retaken by the same ship after a specified period.

20

" Filter 5. The user may directly assign or "lock in" tasks to the schedule, and every
"lock. in" task must be included in every attainable schedule.

" Filter 6. A task may not be scheduled during a week when there are no task supply
assets available.

The second steo assigns to each of the attainable schedules a cost. In the

SURFSKED solution this cost is an aggregation of several subordinate cost factors

which each increase exponentially as they deviate from established ideals. The costs

factors which are used to assign cost to each of the candidate schedules are:

" Inter-event sequencing - This factor assigns cost penalties to schedules with sepa-
ration times between tasks and their prerequisites which vary from the ideal.

" Readiness - This factor assigns a cost to the scheduling of a task based upon its
deviation from the ideal periodicity and based upon the ship's priority and the
task's importance.

" Tempo - This factor imposes cost penalties for deviation from established ratios
(PERSTEMPO and OPSTEMPO) of "in-port" and "at-sea" tasks.

* Deletion - This factor assigns cost penalties to schedules which do not include
needed tasks based upon the importance of the deleted task and the priority of the
ship.

The final step uses an "optimizer" to determine the combination of schedules

which has the lowest cost. "Once all candidate schedules have been generated and their

costs evaluated, the solution to the scheduling problem is to select exactly one schedule

for each ship such that the set of selected schedules minimizes total costs without vio-

lating the supply constraints of supporting (task) assets" [Ref. 10: p. 44]. The specific

optimizer used by SURFSKED is one developed by Brown and Graves called the X-

System Solver which produces efficient solutions to large-scale integer linear program-

ming problems. The two types of constraints that are evaluated by this linear program

are:

" Supply Constraints - The supply of task assets available during each week of the
quarter can not be exceeded.

" Set-Partitioning Constraint - Exactly one schedule must be selected tor each ship.

The objective function selects an optimal solution by minimizing the total cost

of the aggregate schedule. The optimal solution does not necessarily (and in fact prob-

ably does not) include the lowest cost schedule for each individual ship. Rather, it

identifies the lowest cost aggregate schedule.

21

To summarize, there are three different categories of factors used by this model

to identify an optimal schedule.

" Filters

" Costs

" Constraints

2. The Underlying Mathematical Model

The particular mathematical model used by SURFSKED is an integer linear

program referred to as the Set-Partitioning Model. This model has the following general

mathematical form:

Minimize YCA
i=[

subject to ~a,,x, = 1 for j = 1,...,m
1=1

where x, 0 or 1 for all i

a,J 0 or 1 for alliandj and,

c, 2! 0 for all i

The model is used in this case to select a set (or "partition") of columns which

includes only one schedule for each resource.

E. A GENERIC SCHEDULING MODEL

The next step is to identify generic, broadly applicable features from the specific

problem structure and solution methodology presented in the foregoing section. The

objective is to define a class of problems of which the SURFSKED problem and all

similar problems are members [Ref. 8]. The environment and the specific decision fac-

tors that may be modeled are identified and discussed in this section.

The decision factors will be developed in a modular fashion, allowing the user to

select those that apply to the particular problem at hand. This modularity will also fa-

cilitate the later inclusion of additional factors that increase the scope of application.

As additional factors are developed a broader scope of problem.- may be addressed.

22

1. The Environment

The first step will be to define further restrictions to the basic three dimensions

of time, resources, and tasks. Because these three establish the foundation on which the

scheduling problem rests, they must be left purposefully broad in order to avoid unnec-

essarily limiting the problem class. Additional restrictions will be left to the individual

user through the identification of filters, constraints, and goals.

a. Time

The generic problem considers time in discrete blocks or units for the pur-

pose of scheduling. The specific problem used weeks as the units, however, in the ge-

neric problem the user will be given the latitude of defining the specific units (ie.,hours,

days, weeks, months, etc.). The view of time will be confined to a specific time period

or window defined by a starting point, an ending point, and the number of encompassed

time units. The generic problem will allow the user to specify this window, perhaps

placing an upper limit on the number of time blocks which recognizes computational

limitations of the underlying model.

b. Resources

Resources will be considered to be single-valued, discrete, and independently

scheduleable units. It is important that each resource constitute an inseparable entity

rather than a grouping of separable entities or elements. A combination of items should

only be identified as a resource if always scheduled and used together in the particular

problem. Provision will be made for combining resources into groups or classes for the

purposes of referencing as well identification of common attributes important to the

scheduling decision (see "Grouping" below). The generic model will accommodate a

variety of resource types in much the same way the particular problem accomnmodated

a variety of ship types. Resources will also be considered to be non-consumable, that

is, they are not consumed in the execution of a task to which they are assigned.

c. Tasks
The generic model will accommodate only uninterruptible tasks, or tasks

which once begun are completed without interruption. The functionality of interruptible

tasks may still be accommodated by separating the task into it's non-interruptible com-

ponents, classifying each as a separate task, and establishing special prerequisite re-

lationships between them. The generic model will be based upon a static set of tasks,

that is, the list of tasks will remain constant throughout the scheduling period [Ref. 11:

p. 6]. A particular task may occur d.-ing more than one period in the schedule. with

different resources or even with the same resource if that is appropriate to the problem.

23

The functionality is also provided for tasks, like resources, to be grouped for the purpose

of referencing or identification of similar characteristics.

d. Attributes

Attributes are characteristics or values associated with resources and tasks

that are important to the scheduling decision.

Attributes vary in their degree of complexity. The simplest form of attribute

is one that depends only on its parent object. These simple attributes have a one-to-one

correspondence with the parent, and therefore represent a single value.

Other attributes are dependent upon more than one object and are multi-

valued. These compound attributes may be thought of as matrices of values with the

objects upon which they depend forming the ordinates. An example of a compound

attribute from the SURFSKED would be the "need" of particular ships for certain tasks.

In that problem these values were contained in a matrix of resource by task dimensions.

The attributes that are necessary to the solution of a problem are dependent

upon the particular decision factors (constraints and goals) that are being modeled.

Attributes constitute the variables which contain the values used by the various decision

factors within the scheduling environment. For this reason, attributes are perhaps most

logically associated with the decision factors which require them.

e. Grouping

Within the surface ship scheduling problem as well as many other schedul-

ing problems there is an apparent need to be able to deal with resources and tasks both

individually and as groups. This latter capability recognizes that certain sets of resources

and tasks may have common attributes or be constrained similarly within the decision

process. Very often the factors affecting the scheduling decision are oriented towards

groups of tasks and resources. Further, providing an ability to group individual re-

sources enables solution of problems where resources are commonly considered collec-

tively. In the generic problem the user will be allowed to identify a group by the creation

of a group name and the assignment of either resources or tasks to that name. Once a

group has been defined the group name can be used within the scheduling environment

to collectively reference all its members. Further this group referencing may be extended

to the schedule output allowing information to be viewed collectively.

Critical to this notion of grouping is the concept of inheritance. Inheritance

enables each subordinate member object (resource or task) to inherit, or receive from its

parent group, the parent's attributes. Attributes applied to groups of resources are in-

herited by each of the individual resources in the group. This functionality provides a

24

timesaving shorthand method for assigning attributes common to a number of resources

or tasks. Attributes may be assigned directly or they may be inherited. By allowing the

assignment of attributes both directly and through group inheritance users can make

attribute assignments in the way that is most convenient and intuitive.

The generic model proposed here will provide the ability to create multiple

groups of resources and multiple groups of tasks.

2. Generic Decision Factors

For the sake of simplicity, the generic class, like the ship scheduling problem

will be handled deterministically and will not address probabilistic relationships between

the various objects or their attributes.

The factors that influence the scheduling decision within the generic problem

have been organized into the three classes identified within the specific problem; filters,

costs goals, and constraints. Each factor will be briefly discussed and the specific attri-

butes which support that factor will be identified. The particular primitive entities and

other attributes on which each of the attributes depend will be indicated within paren-

thesis immediately following the attribute name.

a. Filters

Task-Resource Need. At the heart of this particular problem class is the

assumption that not every resource "needs" every task. This allows the elimination of

all pairs of tasks and resources which are not feasible in the given problem. This filter

maps each resource to those tasks to which it may be reasonably assigned. Associated

with each feasible pairing of task and resource is a duration, or number of time periods

required to satisfy the need. Need is often dependent upon time and historical infor-

mation. Tasks, once completed by a resource are generally not required again, if at all.

until a certain period of time has elapsed. For example: A sailor (resource) needs reg-

ular physical readiness testing (event). This is a recurring task. However, once a test

has been successfully completed another test is not required until a certain minimum

time has elapsed. By providing this functionality, the generic model is able to easily ac-

commodate recurring tasks without the user having to entirely reassess the needs of all

resources at the beginning of each nev. scheduling period. This capability therefore

provides continuity with previous scheduling periods. The attributes required by this

filter are:

* need (resource, task) - The duration in time periods required, otherwise empty (or
false).

• last completion (resource, task) - The date the task was last completed.

25

* minimum periodicity (resource, task) - The minimum number of time periods which
must elapse before the task is rescheduled.

* duration (resource, task) - The number of time periods it takes for the particular
resource to complete the needed task.

Prerequisite Satisfaction. A wide variety of scheduling problems contain

rules regarding the sequencing of tasks. The significance of this single factor is evidenced

by the CPM and PERT scheduling methods which rely almost entirely on this relation-

ship as a schedule determinant. In those models there is normally a single resource upon

which all the tasks and their prerequisite relationships depend. This is commonly the

major end item (ship, building, etc.) which is the focus of the entire project. This generic

model takes a broader approach, allowing different prerequisite relationships between

events to be associated with any or all individual resources. For example: Resource I

may require Task A before Task B and Resource 2 may require Task B before Task A.

The generic model will also borrow from the ship scheduling problem the concepts of a

minimum separation between the prerequisite and requisite tasks. This minimum sepa-

ration allows time for such things as transit or intervening experience. The attributes

required by this filter are:

* prerequisites (need, task) - a list of immediate predecessor tasks for each task-
resource pair.

* last completion (same as above) - here this attribute is used to identify the prior
completion of prerequisites.

* minimum task separation (event, prerequisites) - the minimum number of periods
that must separate one task from another.

Task Compatibility. This filter is predicated upon the notion that certain

required tasks can be performed concurrently (ie., walking and chewing gum). For the

sake of simplicity our generic model will limit the number of tasks that can be performed

concurrently to three (this is also the maximum that SURFSKED addressed). It should

be noted that this capability should only be used when absolutely necessary because of

the potential for vastly expanding the scope of the scheduling decision. This filter re-

quires the following attributes:

* compatibility (task, need) - a matrix of tasks which may be reasonably performed
concurrently. Initially all tasks have a default incompatibility with all other tasks.

Lock-Ins. This factor is based upon allowing the user to make direct as-

signments of resource time combinations to specific time-frames. This capability is

necessary in any environment where the user may occasionally desire to override the

26

scheduling mechanism to guarantee that a particular task occurs at a particular time.

This filter excludes from consideration any schedule which does not include these
"locked-in" tasks. The following attributes support this filter:

* assignments (resource, task, time) - a matrix of direct assignments which have been
entered by the user. Default is no assignments.

e need (same as above) - The need matrix is used as a validation check on each direct
assignment, to verify both the requirement and the duration. The user should be
allowed to override this validation.

* duration (same as above) - The assignments must show the appropriate duration
for the task.

Resource Availability. Each resource may or may not be available for

scheduling during the entire scheduling period. This filter allows the user to indicate

periods of availability for each resource. The default assumption is that all resources are
available for the entire period. The following attribute is required to support this filter:

* availability (resource, time) - this matrix identifies the specific periods of non-
availability for each resource.

Task Availability. There may be time blocks when certain tasks may be not

scheduled. Only schedules that do not include those task-time combinations are feasible.
This filter acts as precursor to the Supply Constraint which will be discussed later. The

attributes which are required are:

* task supply (task, time) - this matrix identifies the maximum number of tasks that
may be scheduled during each time period. This particular filter is concerned with
those time periods where that value is zero.

b. Cost Factors

Task Inclusion. This cost factor addresses the value associated with each

schedule based upon the tasks that it includes, the importance of each of those tasks and

how closely the scheduling of those tasks conforms to the established ideal periodicitv

for each of the tasks. A lower cost is also given to schedules which involve higher pri-

ority resources. The following attributes have a bearing upon this factor:

* task importance (need) This attribute assigns to each needed task a value associ-
ated with it's relative importance when compared with other needed tasks.

* resource priority (resource) - this is a simple attribute that allows the user to assign
to each resource a value corresponding to the relative priority it receives in the
scheduling problem.

* ideal periodicity (resource, task) - The ideal number of time periods which should
elapse before the task is rescheduled.

27

" periodicity slack (event) - the number of periods that the periodicity can vary from
the ideal without any penalty.

" attainable schedule (resource, task, time) - this is the set of schedules generated for
each individual resource using the filters previously addressed. Each attainable
schedule represents one possible ordering of needed tasks for a given resource over
the schedule period.

Task Omission. This factor assigns to each schedule a cost based upon the

needed tasks which it excludes. This cost is dependent upon the importance of the task

which was excluded and upon the priority of the resource being scheduled. The cost is

further affected by how close the event is in time to the ideal period for rescheduling.

The particular attributes that are required are:

* task importance (same as above)

* resource priority (same as above)

* ideal periodicity (same as above)

* attainable schedule (sani as above)

Task Sequencing. This cost factor is concerned with the time spacing be-

tween a task and its prerequisites in each attainable schedule. Comparison is made with

an ideal separation. and higher costs are assigned based upon variance from that ideal.

The following attributes are utilized:

* prerequisites (need, task) - a list of immediate predecessor tasks for each task-
resource pair.

• last completion (same as above) - here this attribute is used to identify the prior
completion of prerequisites.

* ideal task separation (event) - the ideal number of periods separate a task from its
prerequisite.

* sequencing slack (event) - the number of periods that the separation can vary from
the ideal without any penalty.

• attainable schedule (same as above)

Ratios of Task Types. It is often desirable in scheduling to produce sched-

ules which provide a "balance" of various activities. This was true in the ship scheduling

problem and is likely true in other environments, too. This particular cost factor allows

the user to identify ideal ratios of certain task groups and then to assign greater costs

to those schedules which deviate from the ideal. The following attributes are required:

* ideal ratio - this attribute stores a user-specified ideal ratio of time spent performing
a group of tasks, to total schedule time, for application to all resources.

28

task group (task) - this is a simple attribute of task which identifies the group or
groups of task types that each task is a member of. (See "Grouping" above)

" attainable schedule (same as above)

Each of the above cost factors has associated with it certain weighting fac-

tors which allow it to be "fine tuned" in relation to the other three factors. These weight

factors allow users to assign a variable cost profile to each of the factors depending on

the specific concerns of their environment.

c. Constraints

One Schedule per Resource. This particular constraint is integral to the

particular solution methodology use by the underlying mathematical model.

Supply of Tasks. The generic model allows the user to identify the maxi-

mum number of tasks that may be scheduled during each time period to support the

combined requirements of all :he resources. These constraints represent the onily user

specified factors which actually constrain the solution.

* task supply (same as above) - The maximums specified cannot be exceeded.

F. SUMMARY

This chapter has defined a generic scheduling decision model which includes an en-

vironment and a set of decision factors (filters, cost factors, and constraints) used to

generate an optimal schedule solution. The attributes that are requiied to support the

model I-ave also been identified. The next task is to design an interface which will accept

this information directly from the user. Before that is accomplished, it is necessary to

first develop some good interface design principles to be used in the construction of that

interface. This will be the objective of Chapter I II.

29

III. INTERFACE DESIGN

A. GENERAL

The proliferation of computers within the 1980's was accompanied by dramatic
changes in the way that users viewed and operated those computers. This area of

interaction between the computer hardware and the human operator is commonly

known as the "user interface" or just "interface". Certainly some of the change in the

look of user interfaces may be attributed to a change in the market for computers cre-

ated by the availability of affordable, personal computers. The interface became an im-
portant selling point for many users. Evidence of the importance that conmputer

manufacturers placed on interfaces is seen in the "look and feel" lawsuits which occurred

at the end of the decade.

Traditionally. the study of the physical interaction between man and machine has

been explored within a discipline called human factors. Human factors is described as.
"...a discipline which seeks to provide a method for taking into account human strengths

and limitations during the design of computer hardware and software" [Ref. 14: p. 108].

More recently these studies have been expanded to include analysis of the cognitive and

mental aspects within the growing discipline known as HIuman-Computer Interaction

fHCI, [Ref. 14 and 1]. 1ICI brings together concopts from computer science, psychol-

ogy, linguistics, anthropology, and sociology to study the way that humans relate to

computers [Ref. 15: p.1.

This chapter will explore a number of the recent developments in the desig i of user

interfaces that have come from these two related disciplines. The emphasis x~ill be on

general principles rather than on ihe actual mechanics of interface construction. Re-

cognizing that the objective of the interface is to facilitate smooth communication or

dialog between the man and the machine, the goal will be to identify methodologies

which make the computer interface more effective, or "user-friendly". The following list

of quantitatiN ! measures based on work by Shneiderman is helpful in identifying and

comparing user-friendliness [Ref. 16 and 17]:

* Less time required to learn

* Less time required to use once lea-ned

" Lower 'requency of errors

30

e Increased user satisfaction

* Improved retention over time

With this list in view, the various aspects of computer dialog will now be explored

for principles to guide the development of the user interface for the scheduling DSS ap-

plication.

B. THE DSS VIEW OF DIALOG
As was mentioned in the first chapter, one of the strengths of the DSS approach is

its emphasis on the user interface. For that reason it is useful to understand the view

taken by those within the DSS community regarding the user interface, or "dialog", as

it is frequently referred to in that literature. A widely accepted conceptual model of the

DSS user interface is that developed by Bennett. Bcnnett provides the schematic repre-
sentation of the user interface shown in Figure 5. and proposes three distinct aspects

of the dialog experience [Ref. 18: pp. 46-47]:

• Action Language - What the user can do.

* Presentation Language - What the user sees.

e Knowledge Base - What the user must know.

The design of every interface makes certain assumptions with regard to each of these.
There is a spectrum of assumptions and related designs that will work. but certain

methods are more effective than others. Each of these three components of the dialog

corresponds to a different aspect of human mental processing. These three systems and

their functions are [From Ref. 191:

" The Motor System - Physical actions are produced through the actions of the
muscles moving parts of the body.

" The Perceptual System - External stimuli are detected and transmitted to the cog-
nitive and motor system for further processing or action

* The Cognitive System - The perceptual stimuli, stored knowledge, and stored pro-
cedures for responding to the stimuli based on the knowledge are processed to
produce appropriate actions. either extra stored knowledge or procedures, and
physical actions (using the motor system).

In the following three sections each of these aspects of the dialog is analyzed for princi-

ples that have proven effective when applied to the design of the user interface. Because

these three are so closely related, there will necessarily be some overlap between the

different areas. An effort has been made to discuss each feature in the section where it

appears to have the most significant impact.

31

Ue PRESENTATION Program

LANGUAGE Translate
Thought for

Action
Display

Plan Compute

" Translate) Data
for

Dt

for - Access
System

A

ACTION
LANGUAGE

Figure 5. Schematic Representation of a User Interface

Source: [Ref. 18 : p. 45]

1. Action Language

a. Input Devices

The action language corresponds to the user's motor system and so relates

to the transformation of bodily motion into meaningful computerized processes. Al-

though new and exciting means of communicating with computers are currently being

explored and developed (voice, head and eye movement, etc...), most of the current

interfaces are operated by hand and finger movements. This discussion will be limited

to that type of input. There are two principal ways of communicating with computers

which are in widespread use: keyboards and pointing devices. This later category in-

cludes mice, lightpens, touch screens, and trackballs. These input devices have proven

to be effective tools whose use is learned relatively quickly by non-computer profes-

sionals. They are also widely supported by a number of personal computer systems.

b. The "Production Paradox"

One of the first questions most users have regarding a system is, "what can

I do with it?". This predilection to action is the one of the topics addressed in an article

32

by Carroll and Rosson [Ref. 20] in which they describe a "Production Paradox". This

paradox represents an overwhelming desire by users to get their hands on the program

and do something with it.

New users tend to jump right in when introduced to application systems. If an op-
eration is referred to in their training materials, they want to try it out at once. Rote
descriptions and practice are resisted, and even when complied with, prove difficult
to follow and assimilate. [Ref. 20: p. 83]

The consequences of this approach in many applications can be devastating. It is

amazing what damage can be done to many programs by the curious and inexperienced

user.

The effects of this paradox are not limited to new users, but, the effect on

experienced users is somewhat different. Here the tendency is to develop a method of

operation which satisfices rather than optimizes the capabilities of the software. Rather

than discovering and using designed shortcuts, users tend to find a way that works and

that they are comfortable with, and then continue to use it.

How should the recognition of this "Production Paradox" influence the de-

sign of application software? The authors of the article suggest a number of very prac-

tical solutions, some of which are outside of the design of the interface itself. One of

their approaches to interface design which has seen widespread implementation in recent

years is to provide an "undo command" capability. This allows easy reversal of an action

which was in ignorance selected with undesired results. This approach can greatly re-

duce the fear on the part of the new user that they will inadvertently destroy something,

thus encouraging them to experiment with the system.

Another approach to this paradox is to try to anticipate user errors during

the design process [Ref. 21: p. 582]. This involves second-guessing the types of mistakes

that users might commonly make. Trying to second guess all the types of mistakes a

user could possibly make is a difficult task, especially if the interface is complex.

An increasingly popular way to prevent the user from taking action with

potentially devastating ramifications is to use warning messages. This is very similar in

many respects to the undo capability, only it is less voluntary and generally used only

to guard very severe actions. Prior to the execution of actions which are v."ry significant,

such as erasing files or applications, a warning message will appear which explains in

plain language the effect of the action invoked. This provides the user with an oppor-

tunitv to recover from what otherwise may have been a disaster.

33

c. Degree of Interaction
Historically, computer system were operated for the most part in a "batch"

mode. The user would enter data !nd command sets and then send it to the central
processing unit for computation. Many models today are run in a similar fashion. The
trend in recent years has been towards more interactive systems. Interaction involves
both the Action Language and the Presentation Language, and the greater the degree

of interaction, the shorter the interval between the action and a reciprocal display or
feedback. The importance of "feedback" is discussed under Presentation Language.

There appears to be a strong preference by users for more interactive systems. One of
the benefits of a more interactive interface is that it provides confirmation to the user
that the actions were correct, and taken as intended. The negative effects of erroneously

applied actions are reduced by making the user aware of them sooner. In the early
eighties, Alter studied the benefits of interactive computing and he observed that,
"Interactive computing sometimes has a major substantive impact on group planning
processes"[Ref. 22: p. 164]. He also found that interactive systems were more valuable
when the DSS was being used as a impartial resource used to focus and clarify a position

[Ref 22: p. 163]. These observations support the use of interactive computing for
scheduling conferences where the scheduling application is used as a tool in the planning

and scheduling activities of the organization.

d. Program Complexity

Another consideration that influences the action language is the overall
complexity of the program. Simpson encourages the software designer to "keep the
program simple" [Ref. 14: p. 114]. This is not a simple task. Certain activities are by

nature complicated, and the solution package must address that complexity if it is to be
relevant. Software should strive to be no more complicated than the problem domain
that it addresses. Every effort should be made to eliminate that which is unnecessary.

The number and type of actions that the user performs for a particular task should be
carefully analyzed with the objective of keeping them as simple and intuitive as possible.

Additionally, simple software, although easy to use initially, may be subject
to rapid obsolescence as the user becomes more knowledgeable. The ideal software is

simple enough to use with little introduction, but powerful enough to meet the needs of
the user who has become more proficient with the system and wants to handle increasing

complexity, the "power user". This type of functionality is perhaps best demonstrated
by an example. Consider the very successful Lotus 1-2-3 spreadsheet program. Basic

use of the system is relatively easy. lowever. underlying the basic command set are

34

additional capabilities, most notably a macro language, addressed to the "power user".

The end result is a software package which is simple enough for a novice to use and yet

containing expanded capabilities for the more experienced user. The software accom-

modates the increasing proficiency of its user.

e. Flexibility

Closely related to the point just made is the notion of multiple paths of

action. The concept here is that the software allows the user flexibility in the way the

problem is accomplished. The user can do the same task in different ways. Again Lotus

1-2-3 provides a good demonstration of this capability. The user of Lotus 1-2-3 can

specify commands in two ways, either by using the cursor to highlight the command or

by typing the first letter. User are free to select the method that is most comfortable.

giving consideration to skill level and personal preferences. Systems that employ both

of the input devices mentioned above can offer the user the alternative of using one or

the other to accomplish the same action.

f Dialog Stvle

Also integral to the design of the action potion of the dialog is the selection

of a dialog style. The most common choices are listed below. The first five are from

Sprague and Carlson [Ref. 6: pp. 199-202]. and the last two were added by Jones [Ref.

16: p. 181:

* Question and Answer

* Command Language

* Menu

" Input Form Output Form

" Input-in-Context-of-Output

* Natural Language

* Direct Manipulation

The style of dialog may be any one of these or a combination of two or more of these.

There are trade-offs among styles, with each having merit in particular situations and

environments. Sprague suggests that most DSSs will combine dialog styles. For exam-

ple, "direct manipulation" often includes form fill and menu styles. Direct manipulation

has seen tremendous growth in recent years and provides a number of significant bene-

fits. Because of its significance and the fact that it tends to affect both the action and

presentation languages a later section in this chapter will be devoted to it. One partic-

ular combination which has become very popular in recent years is menus and conmand

35

languages. This combination accommodates both the infrequent and regular users, and

is used in a number of current user interfaces were the user is given the choice of either

selecting the action from a menu using the cursor, or typing a command key or function

key from the keyboard.

g. Consistency

Consistency within the design is a concept which is applicable to each of the

aspects. The user expects the same action to produce the same result. It is likewise

important that similar functions are performed in the same manner throughout the

program. This has the advantage of enabling the user to apply experience gained in one

part of the program to the rest of the program. thus simplifying the learning process.

[Refs. 14: p. 112 and 1: p. 20]

h. Maintain User Orientation

The objective here is to help prevent the user from "getting lost" within the

context of the program. This is also related to the presentation language aspect of the

dialog. It is important to provide the user with sign-posts that tell him where he is,

where he can go from here, and how he can get back to where he came from. Menu-

driven systems again have an advantage in this respect if properly applied. [Refs. 14: p.

114 and I: p. 21]

2. Presentation Language

a. Output Devices

The presentation language is directly related to the perceptual system of the

human mind. There are various ways that humans perceive information including, vi-

sion, hearing, taste, smell, and touch. The computer interface has, to date, relied almost

entirely on vision, however, audio interfaces will very likely become more popular in the

future. The discussion here will consider only visual output devices.

The two principal output devices used by computers are the display monitor

and the printer. In the past what the user saw on the display monitor was constrained

considerably by the capabilities of the hardware. In recent years this has changed

greatlh. The engineers at the Palo Alto Research Center were correct in their 1982 pre-

diction that, "all impressive office systems of the future will have bit mapped displays"

[Ref. 23: p. 244]. The quality and clarity of these bit-mapped displays is improving every

year, with screens getting larger and resolutions getting finer. The direction of display

technology is clearly towards high resolution color monitors.

36

Printer technology has also improved with increasing use of high resolution

laser printers to provide hardcopy textual and graphical output. Gone are the days of

the slow dot matrix printers with their characteristically crude output.

The two types of output have also become more closely integrated giving

rise to the concept of, "What you see is what you get". Under this concept the user is

able to view on the machine everything which will be produced by the printer and

reciprocally, produce on the printer anything that is displayed on the screen.

These improvements in display technology provide the software designer

with increased flexibility in the presentation of information to the user. The question

that naturally arises is "what is the most effective way to present information to the

user?" Some of the answers lie outside of the computer industry and within the graphics

community. That community has for centuries worked with the presentation of infor-

mation without the character based restrictions which have only recently been removed

from computer displays.

b. Display of Text

Although there are many effective applications for pictures and graphic

images, much of the presentation of information still relies upon the use of the printed

word or text. An interesting study was performed by Mills and Weldon which explored

the readability of text on computer screens. [Ref. 24] The results in many respects are

not surprising. They generally show that the more like the standard paper presentation

the screen is, the more readable it is. This is to be expected for at least two reasons.

First, centuries of experience and trail and error have led to the way information is

portrayed on paper media. It is expected that these methods would be very effective

otherwise they would certainly have been changed. Second, there is certainly a condi-

tioning effect in operation. The fact that humans learn to read from the printed page

as well as spending so much of their lifetimes reading from this media must certainly

contribute to the ease with which information portrayed in this manner is understood.

A number of observations were made as a result of this study which should

influence the way text is displayed on computer screens. Some of the more relevant

observations are [Ref. 24: pp. 352-353]:

* The smaller amount of information on most computer screens as compared with a
paper page may reduce reading efficiency.

* An appropriate combination of upper- and lowercase letters seems to be better for
continuous reading tasks, whereas words in uppercase seem to be easier to locate
when searching a display screen for specific information.

37

* Words with lowercase letters may be easier to read when the descenders extend

below the line of print.

* Variable-width characters may be easier to read than fixed-width characters.

* Larger characters appear better for search tasks whereas smaller characters appear
better for reading continuous text.

" More than minimal spacing between text lines appears to improve reading per-
formance.

* High contrast between text and background seems to lead to better performance,
with dark characters on light backgrounds being easier to read as long as the re-
fresh rate is rapid (100 cps).

It is clear from reading these conclusions that they support applying lessons learned in

the world of paper to the world of the computer display. It is also interesting to note

that this experience has been borne out in the marketplace where larger bit-mapped

displays which present text in a paper-like fashion are rapidly replacing the original less

paper-like character-based displays.

c. Display of Quantitative Data

Much of the presentation language of DSS is concerned with the display

of quantitative information. This is especially true of those DSS which are based upon

mathematical models. The need to display quantitative information is not new. Man

has for centuries performed this task with varying degrees of success. For this reason it

is appropriate that in the design of the presentation language of the computer display,

the past achievements in the non-computerized presentation of quantitative information

be considered. A particularly insightful work on this topic is Tufte's "The Visual Display

of Quantitative Information" [Ref. 251.

First of all it is important to note that Tufte himself recognizes that a
graphical depiction may not always be the most effective way of communicating quan-

titative or numeric information. He points out that "tables usually outperform graphics

in reporting small data sets of 20 numbers or less" [Ref. 25: p.56]. The big benefits of

graphics are achieved in the display of larger data sets where tabular data can be over-

whelming.

One of the first concepts Tufte explores focuses on what is called Data-ink.
He defines data-ink as "...the non-erasable core of the graphic, the non-redundant ink

arranged in response to variation in the numbers represented"[Ref. 25: p.931. It is this

data-ink which is the essential element of the graphic. He then develops a "data-ink

ratio" which is nothing more than the ratio of data-ink to the total ink used to display

the graphic. It is the "proportion of the graphics ink which is dedicated to the display

38

of data-information" [Ref. 25: p. 93]. The goal of graphical displays should be to maxi-

mize this ratio. Perhaps the most effective way to do this is to erase non-data and re-

dundant data ink. Non-data ink includes the ink used in labels and grids and other

decorations. Redundant ink is that ink which just repeats the same information, such

as in bar charts. The designer of graphics should constantly be aware of ways that these

two can be removed within reason so that the data and the ink which portrays it are

emphasized.

Another point which Tufte makes which is especially applicable to com-

puterized displays of quantitative data is his exhortation to "avoid chartjunk" [Ref. 25:

p. 931. There are three basic types of items which are lumped into this category. The

first is unintentional optical art, which, ". .. relies on moire effects, in which the design

interacts with the physiological tremor of the eye to produce the distracting appearance

of vibration and movement". These eye catching fill patterns have become increasingly

popular within computerized drawing and statistical programs. The problem with most

of these patterns is that they create "noise" which in fact distracts from the data rather

than supporting or emphasizing it. The second form of chartjunk mentioned is the

grid. Very simply, this is overemphasis on the grid framework in which the data is

placed. "The grid should be muted or completely suppressed so that its presence is only

implicit - lest it compete with the data." [Ref. 25: p. 122]. The third, and final form of

chartjunk is the self-promoting graphic. This exists when the data plays a secondary role

to the presentation format. This form is prevalent in many computerized graphics where

often the response is, "Isn't it remarkable that the computer can be programmed to draw

like that?" instead of "My, what interesting data." [Ref. 25: p. 120]. Graphics should

induce the viewer to think about substance rather than about methodology, graphic de-

sign, the technology of graphic production, or something else.

Another important aspect addressed is that of "data integrity". In short, the

graphic should avoid distorting the data. Four of the principles suggested to improve

graphical integrity are [Ref. 25: p. 77]:

* The representation of numbers, as physically measured on the surface of the
graphic itself, should be directly proportional to the numerical quantities repres-
ented.

* Clear detailed, and thorough labeling should be used to defeat graphical distortion
and ambiguity. Write out explanations of the data on the graphic itself. Label
important events in the data.

* Show data variations, not design variations.

39

* The number of information-carring (variable) dimensions depicted should not ex-
ceed the number of dimensions in the data (ie. Don't use areas to show one-
dimensional data)

The final concept of Tufte's involves "data density". Data density is defined

as the number of separate data entries divided by the area of the graphic. Generally, and

within reason, good graphics maximize the data density. That is, they provide a large

amount of data in a relatively small space. Obviously there is a limit, but generally,

graphics tend to under- rather than over-emphasize data density. One way of applying

this approach is to use "small multiples" much like the frames of a movie to display

variations in different data sets. This encourages the eye to compare different pieces of

data. [Ref. 25: pp. 170-174] Another method is to use "multi-functioning" graphical el-

ements. Perhaps the best example of this method is the stem-and-leaf plot which uses

the variable numbers themselves to plot the distribution of values. [Ref. 25: pp. 139-159]

In conclusion, Tufte provides the following five guidelines to be used to

evaluate graphical excellence [Ref. 25: p. 511:

" Graphical excellence is the well-designed presentation of interesting data.

" Graphical excellence consists of complex ideas communicated with clarity, preci-
sion, and efficiency.

" Graphical excellence is that which gives the viewer the greatest number of ideas in
the shortest time with the least ink in the smallest space.

" Graphical excellence is almost always multivariate.

" Graphical excellence requires telling the truth about the data

d. Feedback

In addition to the presentation of information, the display monitor should

also be used to provide feedback to the user. Obviously this is closely related to the

action language. Every "action" should ideally have a corresponding "reaction" on the

screen. The following quote from Simpson underscores the importance of this concept.

The user of your program also needs feedback. If he makes a keyboard entry and
nothing appears on the screen, then he has no way of knowing that his action has
had any effect. In consequence, he may repeat his action or try another, possibly
causing something unintended to happen. [Ref. 14: p. 1121

Feedback should also appear on the screen in a place which is obvious and in a manner

which is logical to the user. The principles of direct manipulation, which will be explored

in depth later, rely heavily on this principle.

40

e. General Display Techniques

There are a number of very simple yet practical tips that apply to the dis-

play of information on a computer screen [Refs. 14 and 11:

* Access screens by paging, not scrolling.

* Title all screen displays, preferably centered at the top of the screen.

• Center screen displays, that's where the user normally looks.

* Allocate specific screen areas for each type or grouping of information and use
these areas consistently.

e Distinctly separate each area of the screen with mechanisms such as blank rows
or colunis, lines, or color coding.

* Keep screens simple and uncluttered through the use of "white space".

o Follow prevailing conventions--present information from left to right, top to bot-
tom. left justifying text and right justify numbers, aligning them on the decimal
point.

* Display information in a recognizable order--for example, alphabetically, numer-
ically. or chronologically.

e Break up long strings of data into independently recognizable units. For example,
using a hyphen in telephone numbers.

3. Knowledge Base

In considering the knowledge base, the education and experience of the users

must be considered. Each user brings to the system a somewhat different domain of

knowledge. The more specialized the target audience of the system, the more critical is

this concept of "knowledge domain". The term "knowledge domain" is one which was

coined by Brooks in his discussion of difficulties associated with computer programming.

[Ref. 26: p. 125] In that discussion he uses an illustration of a linear progranm-ning

computer model to demonstrate the numbers and types of domains that can be involved

in the solution of a particular problem. The goal of the user-interface should be to build

as much as possible upon the knowledge already existing with the user. The system

doesn't have to be limited to this domain but it certainly should accommodate it. The

user should be able to begin with little more than what he already knows and be edu-

cated in that which he does not know.

a. Minimize Human M1emory Demands

One of the principle goals of the interface should be to minimize human

memory demands. The computer does a much better job of storing information than

humans who tend to forget things, especially when they are cryptic and infrequently

used. Also, it is easy for humans to remember information incompletely or inaccurately.

41

whereas computers are very good at remembering information verbatim. The bottom

line in Simpson's words is to "...rely on computer memory as much as possible". [Ref.

14: p. 1141

One area where effort must be made to ease the memory demands relates

to the action language. The user should not be required to remember a large set of ob-

scure commands in order to operate the system. A much preferred way is to provide a

menu system where the user can select from a choice of commands. For ease of use by

the novice or where the system is used infrequently it is generally agreed that the menu

system is more effective.

The other method of easing the memory demands of computer systems

pertains to the presentation. Each knowledge domain generally has an associated set

of"representations" which are familiar to the users. Sprague's popular ROMC approach
to DSS design encourages the designer to focus on the representations used in the deci-

sion making process [Ref 6]. It is important to recognize that many representations

only have meaning within a specific user context or domain. Most of the problems tra-

ditionally solved using MS OR methods span several knowledge domains, each with

different associated representations [Ref. 5: p. 891]. As mentioned in the introduction.

the computer interfaces to MS OR solution software historically focused on the domain

of the MS OR specialist, incorporating representations that were meaningful to that

audience. It was then the responsibility of the MS:OR specialist to convert these rep-

resentations into others which could be understood by the decision maker within his

knowledge domain. The system proposed by this thesis envisions a different end user,

and therefore a different knowledge domain involving different representations. The

interiace can help to reduce memory demands by incorporating representations with

meaning in the knowledge domain with which the intended user group is familiar.

b. The "Assimilation Paradox"

Another paradox identified by Carroll and Rosson is that, "...users apply

prior knowledge even when it doesn't apply" [Ref. 20: p. 102]. People naturally bring to

the computer environment a wealth of experiences which they readily apply to the

computer. The results of this are seen in the interpretation of English commands and

meanings attributed to graphical images. There is clearly no absolute way of preventing

the user from misinterpreting the system, but, there are some approaches that can help.

One method suggested is to try and repress any association the user might make with

prior knowledge. This can be counterproductive, missing an opportunity to build on the

user's existing knowledge base and resulting in increased learning time.

42

Perhaps the better way of approaching this problem is to exploit the user's
existing knowledge by using metaphors which are obvious and true. A good example

of this approach is seen in direct manipulation interfaces which will be discussed later.

Even this approach can fail. for there are no perfect metaphors. With thoughtful design.,

however, this approach can be very successful. In implementing this approach, care

must be taken in the design of the initial metaphors, ensuring that they are both intuitive

and applicable. This concept will be visited again in the discussion of the STAR inter-

face.

c. Online Help

Although the design of the dialog seeks to minimize memory demands and

tailor the system to the knowledge domain and specific capabilities of the user group,

no system can be entirely understood by all the people all of the time. For this reason
it is goad idea to include an on-screen help facility in the software. This allows the user

to quickly answer specific questions regarding the use of the software without having to

leave the environment of the display. The best of thesc systems are "in-context", that is,

they recognize where the user is within the software structure and provide answers

quickly to questions that relate directly to that conte.,t.

C. DIRECT MANIPULATION

The term "d;rect manipulation" was first used by Shneiderman to describe interfaces

designed with the following properties [Ref. 17: p.201]:

* Continuous representation of the object of interest.

* Physical actions or labeled button presses instead of complex syntax.

* Rapid incremental reversible operations whose impact on the object of interest is
immediately visible.

The advantages of direct manipulation can perhaps be best explained by considering

the following illustration which was used in an article describing Apple's Macintosh

computer:

Imagine driving a car that has no steering wheel, accelerator, brake pedal, turn sig-
nal lever, or gear selector. In place of all the familiar controls, you have only a
typewriter keyboard.

Anytime you want to turn a corner, change lanes, slow down, speed up. honk
'our horn, or back up, you have to type a command sequence on the keyboard.

Unfortunately, the car can't understand English sentences. Instead, you must hold
down a special key with one finger and type some letters and numbers, such as
'S20.TL:A35,' which means. 'slow down to 20, turn lefl, and occelerate to 35'.

43

No doubt you could learn to drive such a car if you had sufficient motivation
and determination. But why bother, when so many cars use familiar controls? Most
people wouldn't. [Ref. 27: pp. 16-211

Familiarity tends to be a result of interfaces based upon direct manipulation. There

is what Laurel refers to as a "first-personess" associated with this type of interface [Ref.

28: pp.76]. This is a grammatical metaphor which conveys the relationship of the user

to the system. Previously most computer systems were second-person oriented (exam-

ple: "place the diskette in drive B"). The use of direct manipulation makes the computer

transparent, with the user operating directly on the objects of interest. The user is pro-

vided input mechanisms which easily accommodate incremental changes and provide

continuous and responsive feedback which can be used to continue, stop, or reverse the

operation being performed. It is not difficult to envision the advantages of such an ap-

proach. Shneiderman himself has identified the following virtues associated with systems

which employ direct manipulation interfaces [Ref. 17: pp. 201-202]:

* Novices can learn basic functionality quickly, usually through a dem nstration bv
a more experienced user.

" Experts can work rapidly to carry out a wide range of tasks, even defining new
functions and features.

• Knowledgeable intermittent users can retain operational concepts.

" Error messages are rarely needed.

" Users can see immediately if their actions are furthering their goals, and if not, they
simply change the direction of their activity.

" Users .xperience less anxiety because the system is comprehensible and because
actions are so easily reversible.

* Users gain confidence and rnastery because they are the initiators of action, they
feel in control, and the system responses are predictable.

Shneiderman has also identified a number of more subjective benefits that he has ob-

served [Ref. 17: p. 180]:

" Users enjoy using the system.

• Users are eager to show the system off to novices.

* Users are inclined to explore more powerful aspects of the sys*'m.

Perhaps one of the best examples of the use of direct manipulation can be found

within video games. These games pi o'ide'a clearly displayed field of action and physical

actions to manipulate visible objects within that field. Video games rely heavily on an

44

effective interface to attract and maintain user interest. A number of the principles that

they employ have been proven applicable to any interface design. [Ref. 17: pp. 188-1901

D. GRAPHICAL USER INTERFACES (GUI)

A close look at the current trends in operating systems and software applications

reveals an increasing acceptance of graphical interfaces as the interface of choice. This

is due to a number of factors including improved hardware capabilities and the new

types of people using this hardware. In this environment "graphics offer potential for

decision makers who can benefit from interaction with computer-generated represent-

ations but who are repelled by computer-oriented detail" [Ref. 18: p. 54). This type of

interface, popularized by the Apple Macintosh, has come to be referred to as the

Graphical User Interface (GUI), and has gained adherents in almost every major per-

sonal computer company.

1. General

What constitutes a GUI? There are variations within the current implementa-

tions of GUIs but generally they consist of the following elements [Ref 29: p. 2501:

* A pointing device, typically a mouse

* On-screen menus that can appear or disappear under a pointing device.

* Windows that graphically display what the computer is doing

* Icons that represent files, directories, and so on

" Dialog boxes, buttons, sliders, check boxes, and a plethora of other graphical
wideets that let you tell the computer what to do

A current listing of some of the larger GUI participants and the names given to

their respective interfacing systems is provided in Table 1.

The basis for most GUIs can be found in the work initially performed by a

group of young researchers at the Palo Alto Research Center (PARC). They are gen-

erally credited with developing the first commercial GUI-based personal computer.

Considering the widespread success of the type of interface, it is beneficial to explore the

underlying research upon which this early PARC interface was based. [Ref 29]

45

Table 1. CURRENT GRAPHICAL USER INTERFACES

Organization(s) Product

Apple Macintosh

Microsoft Windows

IBM with Microsoft OS!2 Presentation Manager

Digital Equipment Corp. DECwindows

Open Software Foundation Motif

Santa Cruz Operation (SCO) Open Desktop

Commodore Amiga Intuition

NeXT Computer NeXTStep

Digital Research GEM

Sun Microsystems Open Look

Hewlett-Packard with Microsoft Common X Interface

liewlett-Packard NewWave

Source: [Ref. 29]

2. The Star Interface

In 1970, Xerox established a research center at Palo Alto to explore technolo-

gies that would be important for their planned entry into office business systems.

"PARC researchers were fond of the slogan 'The best way to predict the future is to in-

vent it'" [Ref. 30: p. 22]. The amazing thing is that in many ways they did just that.

They were ahead of their time, designing systems which stretched the capabilities of the

hardware of that day. Much of the pioneering work on personal computer systems can

be traced back directly to research performed by these young engineers. Before

Shneiderman had published his first paper on the benefits of direct manipulation the

group at PARC was coming to similar conclusions in their pursuit of a truly user-

oriented interface for personal computers. In April of 1981 they introduced a personal

computer called the 8010 Star Information System which employed a GUI. The goals

and principles of interface design which are at the root of this system will be the focus

of the rest of this section.

a. The Primary Goal and Assumptions

The Star System was designed and targeted towards the business user with

the goal of making the computer itself as invisible as possible. The designers assumed

46

that this user was primarily interested in accomplishing his business tasks and not at all

interested in computers. They also assumed a casual, occasional user rather than

someone who used the machine all the time. This led to the design goal of making the

machine easy to remember in addition to being easy to learn. [Ref. 30: p. 11]

b. Design Approach

The concepts that PARC developed for the interface of the Star were de-

veloped in advance of the writing of any software. PARC invested two years and about

30 person-years just investigating visual interface concepts before starting work on the

actual product. This was contrary to so many systems which write the software algo-

rithms first and then tack on the user interface later. The designers worked from the user

in, rather than from the hardware out. Their investigations led to the identification of

a variety of interface concepts and the classification of those concepts into two groups,

easy and hard (Table 2).

Table 2. INTERFACE CONCEPTS

Easy Hard

concrete abstract

visible invisible

copying creating
choosing filline in

recognizing generating

editing programming

interactive batch

Source: [Ref. 23]

In the development of their interface, they attempted to avoid the difficult or "hard"

concepts and instead focus on the easy ones. This solidified into a number of very spe-

cific objectives which will be discussed briefly below [Ref. 23].

Familiar user's conceptual model Star designers recognized that users have

a conceptual model which they develop about a system that helps them understand and

use the system. They strove to include analogies and metaphors that were already fa-

miliar to the user to describe computer functions and components. It was hoped that

in so doing they would make the system less alien and abstract, and easier to learn.

47

Seeing and pointing versus remembering and typing - This approach was

based upon the recognition that (1) conscious thought deals with concepts held in
short-term memory and (2) the capacity of the short-term memory is limited. Their goal
then was to make everything relevant to the task at hand visible on the screen thus re-

lieving the load on short-term memory. This would allow the user to reserve more of
this space for actual business activities. An interesting side benefit of this approach was

observed:

A subtle thing happens when everything is visible: the display becomes reality. The
user model becomes identical with what is on the screen. Objects can be understood
purely in terms of their visible characteristics. Actions can be understood in terms
of their effects on the screen. This lets users conduct experiments to test, verify, and
expand their understanding - the essence of experimental science. [Ref. 23: p. 2601

These are the same benefits that have already been mentioned in connection with direct

manipul,.tion.

What you see is what you get - The Star interface was one of the first to

recognize this principle of relating the screen to the printed output. The display resol-

ution then (and even now) is not as high as the printed resolution but even still the dis-

played approximation greatly improves efficiency by eliminating the print cormmands
previously invoked "just to see what it really looks like".

Universal commands - The objective here was to provide basic generic com-

mands that could be used throughout the system. They were helped along in this by the

previous identification and graphical depiction of objects. The user could identify a

specific object and then apply a more generic command. The result of the use of uni-
versal commands was a simpler and more consistent interface.

Consistency - The importance of this feature has already been mentioned,
but it is interesting to note the way that it was implemented within the Star design. The
design incorporated paradigms for operations used throughout the system. It also forced

a classification of objects within the system, allowing similar objects to be handled in

similar manners.

Simplicity - The designers of the Star attempted to comply with a maxim
attributed to Alan Kay: "simple things should be simple; complex things should be pos-

sible." Many features already discussed had the effect of enhancing simplicity. One

means to this end was to eliminate alternative ways of performing the same function.

Also. research was performed with representative users to determine which methods were

simplest.

48

Modeless interaction - Star's designers recognized that confusion often stems

from having a variety of modes in which commands are different or have different re-

suits. They also recognized that modes were necessary and not all bad. One way to

eliminate some of the problems was to use a noun-verb structure to invoke commands.
A user would select the object upon which the action was to be performed and then se-

lect the action to be performed. They also clearly identified a change in mode, both by
a message and a change in the cursor icon.

User tailorability - A final design objective was based upon recognition that

no matter how general or powerful an interface is it will never satisfy all users. With this
in mind the system was designed to allow the user to change the appearance of the sys-

tem as well as redefine certain system operations. This allowed the user to adapt the
system specifically to his own personal desires and capabilities.

It is clear from the foregoing list of features that the Star embodied a good

number of interface principles that have become standard practice within current GUI
design. Some of these have been refined in recent years but the basic concepts remain

amazingly sound. The designers of the Star interface summarize their efforts as follows:

User-interface design is still an art, not a science. Many times during the Star design
we were amazed at the depth and subtlety of user-interface issues, even supposedly
straightforward issues as consistency and simplicity. Often there is no one "right"
answer. Much of the time there is no scientific evidence to support one alternative
over another, just intuition. Almost always there are trade-offs. [Ref. 23: p. 282]

The designers at PARC did much to move the design of interfaces towards a science.

Since the design of the Star, many of the interface principles upon which it was based
have been adopted by other manufacturers. Few people would now dispute that they

designed the prototype of future interfaces.

E. A LOOK AT TOOLS
It is useful to look at some of the tools that have been recently popularized for the

construction of user interfaces. This will be a broad overview rather than a technical
examination. Three important technologies will be introduced with the goal of identi-

ying the basic concepts upon which they are based.

1. Object-Oriented Programming (OOP)

The progranuning world is becoming object-oriented and again this is closely

related to what has happened with computer interfaces. Object-oriented programming
is based upon basic building blocks called objects. Meng provides this definition of an

object:

49

An object combines information and any operations that can be performed
on that information into one single bundle. (in OOP lingo, this bundling is termed
encapsulation, the operations are methods.)

An object performs one of its methods when you send it a message. The
important thing is that the message doesn't have to tell the object how to do some-
thing, only to do it.
...Think of objects as computer chips--small modularized units with built-in sets of

instructions to perform small operations, ready to be combined into a larger pro-
gram. [Ref. 31: p. 1741

Hartson adds two additional characteristics not mentioned above; dynamic binding and

inheritance of attributes and procedures. He also gives the following advantages of

object-oriented programming [Ref 32]:

* Higher productivity because code can be shared and reused

* Decoupling of representation from implementation

* Reliability, consistency, and locality of definition from inheritance

* Low code bulk

Object-oriented programming was first developed at PARC in the 1970s with

the language called Smalltalk. Although the Star interface is not written in Smalltalk

many of the concepts learned in the development of Smalltalk were used in development

of that system. Today a number of traditional languages including Pascal, C, LISP. and

Prolog are being modified to include object-oriented capabilities. [Ref. 31]

2. Toolkits

With the advent of graphical interfaces based on objects, systems of these ob-

jects have been developed which are commonly called "toolkits". A toolkit "...provides

programming abstractions for building user interfaces" [Ref. 33: p. 19]. These toolkits

basically provide a collection of standard objects that can be used to build graphical

interfaces. Two of the earliest and best known toolkits were the Smalltalk Model-

View-Controller and Apple's MacApp for the MacIntosh. Toolkits are often employed

within specific hardware environments for the purpose of maintaining a consistent "look

and feel" among the various software applications written for that hardware. Toolkits

provide the advantage to programmers of not having to develop objects from scratch.

The increasing popularity of both graphical interfaces and object-oriented programming

will undoubtedly lead to an increasing use of toolkits. [Ref. 33: p. 19].

3. User-Interface Management Systems (UIMS)

UIMS are a very recent development and it is not always clear in what way they
differ from toolkits. The primary, difference appears to be in the level of abstraction,

50

with UIMS generally striving for a higher level of abstraction than toolkits which tend

to be implemented within a specific GUI environment. The following explanation of a

UIMS has been provided by Norman, Draper and Bannon:

A UIMS provides a way for the designer to specify the interface in a high-level lan-
guage. The UIMS then translates that specification into a working interface, man-
aging both the details of the display and the associated input and output and also
the interaction with the rest of the program. UIMS systems allow the generation
of high-quality interfaces with much less effort than programming the interfaces di-
rectly. The disadvantages are that one is restricted to the type of interface supported
by the particular UIMS, which may not always match the desired application well.
Current UIMS systems are in an early stage of development and the high-level lan-
guage is not very usable, very complete, or particularly at high-level. In addition
there are often penalties in performance. [Ref. 34: p. 496].

In addition to specifying the interface at a high-level of abstraction, UIMS also

seek to completely separate the code that implements the user interface from the code

that runs the application [Ref. 33: p. 19]. UIMS came about in part due to the criticism

that toolkits were too low-level and difficult to work with. However the high-level ap-

proach of UIMS has resulted in its own set of shortcomings. The result is that interest

in toolkits appears to be on the rise while UIMS have yet to gain widespread acceptance.

F. SUMMARY

This chapter has identified some of the more important principles associated with

interface design. The focus has been primarily on graphical interfaces or GUIs because

they are undoubtably the interface of the future. The discussion has remained purposely

one step behind the leading edge because much of that work remains untried and un-

proven. Rather the focus has been on principles which, although in some instances quite

revolutionary, have been proven valid not only in the laboratory, but also in the mar-

ketplace.

It is important to remember that a good user interface is not a panacea. In fact a

better interface may be thought of as a two-edged sword in that it will not only make

clear what the application can do, but also what the application cannot do. Clearly

"form must follow function". With these thoughts in mind, the next chapter will apply

the concepts of this chapter to TaskAfaster, a prototype interface based on the generic

scheduling model developed in Chapter II.

51

IV. PROTOTYPE DESIGN AND IMPLEMENTATION

A. THE PROTOTYPING APPROACH

Historically, design of computer software was done first on paper. The analyst de-

scribed in detail the particular features of the system and the entire structure of the

program was specified before the actual programming began. In many instances this

approach proved time consuming and error-prone. It frequently resulted in serious er-

rors or omissions in design which went undetected until the coding began. [Ref. 21: p.

414]

In recent years there has been a shift towards an engineering approach to design

called prototyping. The dictionary defines a prototype as, "an original or model on which

something is patterned" and or "a first full-scale and usually functional form of a new

type or design of a construction (as an airplane)." DSS development is normally per-

formed using an iterative prototyping approach [Ref. 35: p. 1521. Prototyping offers a

number of advantages to the design of software which make it an attractive alternative

to traditional software design methods.

1. Advantages of Prototyping

The following are some of the advantages of a prototyping methodology [Refs.

21: p. 415-416 and 35: p. 152]:

" Increased and more frequent participation by users increases user acceptance and
support for the project and reduces the likelihood of rejection at the time of final
product delivery.

* Prototypc :,, ::io_ r fvr user, to unrcrstand. If a picture is worth a thousand
words, a working model is worth a thousand pictures. This makes it easier for users
to provide meaningful feedback.

* Prototyping can result in more creative designs because of better and more frequent
user feedback.

" The iterative nature of prototyping allows it to accommodate changing user re-
quirements more easily.

" Prototyping tends to encourage realism in the design, avoiding the error of speci-
fying the impossible or at least making the impossible apparent sooner.

* Prototyping usually results in a shorter overall development time.

* The Prototyping methodology involves lower risk. The feasibility of a project can
be reevaluated at the various iterations of the design with a higher degrec of' accu-
racy and reliability.

52

2. Types of Prototypes

Prototyping methodologies may be classified along three orthogonal dimen-

sions, with each dimension embodying two development approaches [Ref. 36: p. 47].

a. Revolutionary (Throwaway) Versus Evolutionary

"A revolutionary development process is one in which a prototype is de-

signed, built, evaluated, and scrapped before work begins anew on the real system" [Ref.

36: p. 47]. Fred Brooks has said, "where a new system or new technology is used, one

has to build a system to throw away, for even the best planning is not so omniscient as

to get it right the first time" [Ref. 37: p. 116]. The very nature of prototyping recognizes

this concept and to a certain extent every prototype involves at least porticns which are

thrown away during the development process.

The other approach in this dimension is evolutionary. Here the prototype,

"...evolves through iterative modifications into a complete implementation of the target

application system" [Ref. 36: p. 47]. The evolutionary approach minimizes wasted effort

and avoids the, "difficult question of when to discard the prototype and start working

on the real system" [Ref. 36: p. 47].

b. Inteiface Only (Rapid) Versus Whole System

The "Interface only" or "Rapid prototyping" approach results in a mock-up

of the system which demonstrates the key features of selected components of the entire

system rather than the entire system. The focus is generally on the interface component

and the ability to demonstrate the "look and feel" of the system to the user.

Using the "Whole system" approach a developer builds the entire system

on the computer much like it was built on paper under more traditional development.

"Whole System" prototypes are more structured, but are also more difficult to build.

[Ref. 36: p. 47 and 21: p. 420]

c. Intermittent Versus Continuous

"Prototypes for which the ability to demonstrate system behavior is 'Inter-

mittent' can be exercised only at times in the development process when a particular

version of the system has been completely developed" [Ref. 36: p. 47].

"Continuous" prototypes, in contrast, can be exercised at any time during

the development process. This ability is difficult to achieve because it requires that all

unfinished portions be appropriately "stubbed" to prevent the system from crashing.

53

B. NEXT INTERFACE CONCEPTS

A decision was made to develop the interface prototype using the NeXT computer.

This decision was based in part on the quality of its bit-mapped display, its computa-

tional power, and its interface development environment. This section describes the

basic design philosophy of the NeXT interface; its action paradigms; and its interface

development application, "Interface Builder". Much of the information for this section

was taken from the NeXT System Reference Manual [Ref. 38].

The NeXT user interface was designed to meet the demands of both the novice and

the experienced user. To accommodate the novice or infrequent user, the interface

should be simple to learn and easy to remember. To meet the needs of the more expe-

rienced user, the system should be fast and efficient, without unnecessary or cumbersome

mechanisms that slow operation. "The challenge is to accommodate both these goals in

ways that don't conflict--to combine simplicity with efficiency" [Ref. 38 p. 2-5]. The

graphical, mouse-based, user interface of the NeXT which uses buttons, windows, sliders

and other graphical objects with physical counterparts, is able to meet this challenge.

Not only are these graphical objects easy to remember they also minimize keystrokes

and speed operations, resulting in improved efficiency.

The NeXT interface was designed with the following four basic principles in mind

[Ref. 38: p. 2-6]:

" The interface should be consistent across all applications.

" The user is in charge of the workspace and its windows.

" The interface should feel natural to the user.

" The mouse, rather than the keyboard, is the primary instrument for user interaction
with the interface.

1. Action Paradigms

The NeXT supports four different action paradigms corresponding to mouse

input. Each of these is discussed briefly in the following paragraphs. [Ref. 38: p. 2-6]

a. Direct Alanipulation

Most objects respond directly to manipulation with the mouse--a button is high-
lighted when pressed, a window comes forward when clicked, the knob on a slider
moves when dragged. Direct manipulation is the most intuitive of the action
paradigms and the one best suited for modifying the position and size of graphical
objects. Windows, for example, are reordered, resized, and moved through direct
manipulation.

54

b. Control Action

Some objects--buttons, scrollers, and text fields, among others--are vehicles for the
user to give instructions to an application. By manipulating the object, the user
controls what the application does. Clicking a "close" button, for example, not only
causes the button to become highlighted, it also removes the window from the
screen. The button is simply a control device--like a light switch or a steering
wheel--that lets the user carry out a certain action. Graphical objects that play this
role are therefore collectively known as controls.

c. Target Selection

Some controls act on a specific domain. The user first selects what the control
should act on. the target, then chooses the control. For example. a user might select
a range of text in a file, then choose the "Cut" command from the Edit menu to re-
move it. The selection of a target always precedes the choice of a control action.
Selected objects are usually editable graphics or text, but they may also be other
types of objects, such as windows (the "Close" command) and icons (the "Delete"
command).

d. Tool Selection

In this paradigm. users can change the meaning of subsequent mouse actions by
selecting an appropriate tool, often displayed in a palette with several other tools.
Each tool controls a certain set of operations that are enabled only after it is chosen.
For example. a graphics editor might provide one tool for drawing circles and ovals.
another for rectangles. and still another for simple lines. Depending on which tool
is chosen, mouse actions (clicking and dragging) will produce very different visual
results. The cursor assumes a different shape for each tool, so that it's apparent
which one has been selected, and the tool remains highlighted.

Tool selection, in effect, sets up a mode-- a period of time when the
user's actions are interpreted in a special way. A mode limits the user's freedom of
action to a subset of possible actions, and for that reason is usually avoided. But
in the tool-selection paradigm, the mode is mitigated by a number of factors:

0 The mode isn't hidden; the altered shape of the cursor and the highlighted state
of the tool make it apparent which actions are appropriate.

* The mode isn't unexpected; it's the result of a direct user choice, not the by-
product of some other action.

* The way out of the mode (usually clicking in another tool) is apparent and easy,
It's available to the user at any time.

* The mode mimics the way things are done in the real world. Artists and workers
choose an appropriate tool (whether it's a brush, a hammer. a pen. or a tele-
phone) for the particular task at hand, finish the task, and choose the next tool.

2. Interface Builder

One of the most significant features of the NeXT computer is its "Interface

Builder" application. Interface Builder allows the developer to create an interface using

55

the principles of direct manipulation, by actually "dragging" different graphical interface

objects into windows and modifying them as required. It is essentially a "Draw" pro-

gram for graphical interfaces. The use of Interface Builder makes the construction of a

graphical interface (historically a very difficult and time consuming task) a manageable

activity. There is no question that this revolutionary approach will become increasingly

popular in the future. Without Interface Builder it would have been practically impos-

sible to develop this prototype in such a short period of time. [Ref. 38: p. 2-61

C. THE SCHEDULING INTERFACE

1. Scope of Implementation

The primary objective of TaskMaster is to demonstrate the type of interface

that can be constructed on a model-based DSS using current graphical interface tools.

In this sense, TaskMaster is a "proof of concept". TaskMaster currently exists as an

"Interface Only" prototype, without connections to the mathematical model. The use

of Interface Builder allows the prototype interface to be "continuously" operated

throughout the development process. TaskAlaster is also an "evolutionary" prototype

which has been designed explicitly for combination with a particular model. The com-

puter platform has been selected in part based upon its ability to handle the computa-

tions which are required. The use of an object-oriented methodology will facilitate its

evolution into a complete system. The eventual goal is to provide a user-friendly inter-

active front-end which is fully integrated with the optimizing solver and which facilitates

the input of data values and model parameters, eliminating the tedious generation of

fixed formatted files and providing more control over the model [Ref. 39: p. 8911. .lones

has identified the following steps and associated representations which traditionally ac-

company the modeling process:

Consider a problem that will eventually be analyzed using mathematical program-
ming. Tackling that problem will usually involve at the minimum, six different rep-
resentations. In particular. the problem is usually stated in a natural language
(representation 1). Then an algebraic formulation is frequently developed (repre-
sentation 2). Once relevant data have been collected (representation 3), it must be
converted into a form acceptable to the implementation of the mathematical pro-
gramming algorithm (representation 4). Once the algorithm runs, it typically
produces output (representation 5) describing the optimal levels of the decision
variables as well as sensitivity analysis information. The output is usually not suit-
able for managerial presentation. so data from the algorithm output must be ex-
tracted to produce a more suitable representation (representation 6). [Ref. 5: p. 891]

56

TaskAlaster has been designed to effectively eliminate the intermediate representations

(2 through 5 above), allowing the user to input scheduling information in a natural and

intuitive manner and receive meaningful feedback directly.

2. General Principles

In addition to the interface design considerations presented in earlier chapters,

the following more specific principles or concepts were developed during the design and

implementation of Tasktlaster

a. Alinimize Data Entry Burden
The objective was to require that the user only put in essential data and that

only once. Mathematical models typically involve large matrices of data which are often

sparsely filled. The user should only have to fill in the non-zero data. Where the choice

of values is limited, the uscr should be given the opportunity to select a value rather than

having to type one in.

b. Provide Maximum lodel Information and Control

The data that the model uses and the way that it uses it should be made as

clear to the user as possible. The formulas and the basic operations of the model should

be available for review and all of the parameters should be adjustable from the interface
rather than "hard-coded" into the program.

c. Left to Right, Top to Bottom

Graphical interfaces allow the user considerable freedom of movement

within the environment, and a number of actions are available at any time. To guide the

user in the proper sequence of actions the TaskMaster interface employs a left to right,

top to bottom paradigm. The selections to be made by the user in the most common

sequencing of events should begin at the top or left hand side of the window with sub-

sequent selections below or to the right. This paradigm mirrors the way English text is

read and provides a natural ordering to the windows.
d. I lhite for Selection and Input Values

The use of white in the window is used consistently in the interface to indi-

cate that values can be typed into that space or tnat the highlighted item is being con-

sidered. The concept here is that the information over which the user exercises control

is highlighted in white. This, along with the ordering paradigm, improves user orien-

tation. Conversely, information which is for "display only" is shown in a dark gray field.

e. Window Specific Help

In implementing the "On-line Help" concept from the Interface Design

chapter, a decision was made to include a button in each window that the user could

57

select to get help. The buttons, indicated by a simple question mark, are the same on

all windows and are located generally in the same location (lower right corner). When

"pushed" they bring up an informtion panel which explains the functionality of the

window.

f. Save The Visible Information Only

Changes made to data must be either saved or discarded before the user is

allowed to exit a window. The user should never be required to make a decision to save

or not save information that is not visible. That is asking for errors.

g. Oevelop and Reuse Standard Inteiface Objects

This approach creates a consistent interface that minimizes user memory.

Within the object-,-iented environment of the NeXT this is easy to do and speeds de-

velopment. For example, within TaskMaster a standard list entry object has been de-

veloped which is used to enter resource, task, and group names.

3. Functional Descriptions

This section briefly descrioes how TaskAllaster works and describes the

functionality of each of the major windows that comprise the application. The figures

shown are actual "screen dumips" of individual windows on the NeXT display which a]-

lows multiple windows to be displayed simultaneoiAy.

a. Getting Started

When the user first launches thze application the menus and title r'Tnel

shown in Figure 6appear on the screen. Other than the standard NeXT menu choices

(Info, Edit. Print. Hide, and Quit) the only choice evailable (not gray) is "Model". -he

user selects from the Model sub-menu either a "New" model or "Open(s)..." an existing

model. Selecting an existing model loads a previously developed problem into

TaskAlaster. Creation of a "New" model allows the user to input a different data set.

U, on selection of "New" from the menu an empty "Environment" window is automat-

ically opened (see Figure 7). The user gives the new model a name and inputs the time

period, resource, and task information corresponding to the scheduling problem to be

considered.

b. Scheduling Environment

The "Environment" window. Figure 7, is displayed when "Environment" is

selected from the Main Menu (or automatically if a new model is being created). It is

designed to allow the user to enter or edit the name, ,if the resources and events in the

scheduling decision. The user simply puis the cursoi in either one of the white boxes

below the scrollable lists and starts entering the names. The list can be edited at ar,

58

Pioblerm-Idependent.
Ver~06.0.A9 chedide O ptim atiqn'.M odeU ."'

Edit
Save r....

.- ,- - , - • . ' :. -'"" " • " .

...... o...

Environment Revert to Saved

-Groups
Need

Attributes

Lock-ins

Goals
Schedule

Hide h

Quit. q

Figure 6. Menus and Title Panel

59

M~~~IE vionm nt ------MT ist1~S~ai

Seece Reai Avl ab

Reeve (CG24) MaterialInspection
________ is- p~

1~R v&~~1Reii~ri i~ ~ -yrMHV K iiflrd V
Reve (C 24 AFPK' ili-to

Mir~f j-67 team:'

Figre7.Enirnment indow,68

M - 0 U k-j'P FT4f OP '%60i

time by selecting the name that needs to be changed (or removed) and then making the

necessary modifications using the buttons below the lists.

This window also allows the user to define or modify the timeframe under

consideration. A date, month and year is selected from the pop-up lists that appear

under the beginning date. The user then selects the number of time periods and unit of

time (day, week, or 4 weeks).

Within this window all three "dimensions" of the problem are defined,

therefore, this window establishes the size of the model and its underlying database.

These are the primitive entities which form the foundation of the model and changes to

the values in this window affect all the other windows.

c. Resource Group Assignments

The "Resource Group" window, Figure 8, is displayed when "Resource" is

selected from the "Group" Sub-menu. It is designed to permit the user to create group

names for resources and assign one or more individual resources to the group. The same

scrollable list and input window object is used for creating or modifying group names.

To assign member resources to the group, the user simply selects a group (which high-

lights it) and then selects individual resources from the list to the right (which also

highlights them). The assignment is saved by pushing the "Save" button. The "Revert"

button allows the user to undo group assignment revision, redisplaying the previously

saved assign~ment.

d. Resource Attribute Assignment

The "Resource Attributes" window, Figure 9, is displayed when "Resource"

is selected from the "Attributes" Sub-menu. It enables the user to assign the simple at-

tributes of Availability and Priority to each resource. This can be done individually, or

by group (where all members of the group have exactly the same values for these attri-

butes). When a group is selected, it is highlighted along with all the individual resources

that comprise that group. The user then pushes the buttons over each of the time peri-

ods in the schedule that the resource is unavailable (the default is "YES", indicating

availability for the entire scheduling period). The sliding window mechanism allows the

user to scroll through the entire schedule window regardless of its size. The user is also

able to select one of five different priorities. Once all attributes have been defined the

"Save" button is pushed to store the values. 'he "Revert " button allows the user to

undo attribute changes. redisplaying the previously saved attributes.

61

C s Lockwood (FF 1064)
Frigates Ouellet (FF 1077)

101ehip W1 V-77Francis Hammond (FF1 067)i

Desttollimtte7i 10)'

I Meyerkord (FF 1058)

~. McClusky (FFG 41)
I CefCV 762F.

Rentz (FFG 46)
,~ #.~' Sides (FFG 14)

Crommelin (FFG 37)

lewis BPuller (FFG 23)

________________ Albert David (FF 1050

'l Rem 67: ename.
~~~ njmwr

4
'

Figure S. Resource Group Window

62



"*NONE"' A LwdFF9O6

SirarmorH

~~NagM M-9t~4~

arri~~ I i t11 T( 17FGT4MM6)

Z___ 0'w,e ans, LP

4~n

AimitzbCVN 68

YES YES YES YES YES YES YESIweek 7 Iweek8 week 9, weekl 16weekil1-[ wek 12 -we

PRIORITY
qIGHrC CC LOW Revert 7 Save

-2 3 4 ~5

Figure 9. Resource Attributes Window

63



e. Task Group Assignments

The "Task Group" window, Figure 10, is displayed when "Task" is selected

from the "Group" Sub-menu. It is designed to permit the user to perform the same

grouping functions for tasks that were performed with resources. All the mechanisms

function in the same way as on that window.

f. Task Attribute Assignment

The "Task Attributes" window, Figure 11, is displayed when "Task" is se-

lected from the "Attributes" Sub-menu. It enables the user to assign the simple attribute

Supply to each task. This can be done individually, or by group in the same manner as

with resources. For each week of the schedale the user types in an integer representing

the maximum number of highlighted tasks which can be scheduled.

g. Need Identification

The "Need Identification" window, Figure 12, is displayed when "Need" is

selected from the Main Menu. It allows the user to identify which of the tasks are ac-

tually required by each of the resources. Need can be identified either by individual re-

source or by group. The "left to right" paradigm is employed in this window with the

user first selecting the resource (or resource group) and then identifying the needed tasks.

The needed tasks may be indicated individually, or if all the needed tasks arc defined by

a task group, that group may be selected instead. As before, the selection of a group

on either side highlights the members of that group. To save the assignment of needed

tasks, the "Save" button is again used. The "Revert" button restores the last saved as-

signment.

h. Needed Task Attributes

The "Needed Task Attributes" window, Figure 13, is displayed when "Need"

is selected from the "Attributes" Sub-menu. It is where the user defines all those attri-

butes that are dependent on both the resource and the task it needs to perform. These

attributes are:

" Last Completion

" Duration

* Ideal Periodicity

" Periodicitv Slack

" Importance

" Immediate Prerequisites

" Compatible Tasks

64



Mat Vis1,GacTrbn

* p Ea.Gas Turbine Pouso

:P ap eea, a ubn
~ Liht-ff xamGaTub

* _ 3MAMtOSit9

MT ii ,Gas Turbine PrplsoI
MT st 2,NFt Gs rbn
OPPExmunI U LllJC
OPP Reexm Ga Tubn

Ugt-f Eam asTub

gpeffbeae

c

* Figue 10.Task rou Wino

656rjiO



Tas Attibte

jRUS--, t NtDftIijT~ ID4
7 _i f 1ViIrre

U0;::a'b I

ii, V% Wii 
V I*,~ t A*?,.,ft . 4-'~n 

P F-,-io Plj4
4

,.
4

.~A?. - 5 '->' t.c- .-'nv r4 .'rYW .

Figure~~~~ 11 akAtibtsWno

66ct



NEEDE TAS

New rlens LHIIr AnualSuply Ispetio
P~te~cf~WAS ~ Pr-ovetiau~est Ins7k'~ ~ ~~ MaerialInspctiontfeet~J~ ~ Medcl NOEcto

~ Me~ill 00' 76TL

Ntritiii (CVN 68)6- OPP Exam Stea
Rent (FF ~46 OP R~earn$t71

Sides'(FFG 14) L~~IofEaSem
CAmli (FG3)W" T is 1Rls

A1 w ~B'ur ~AMTii2Dee

677



Nemediat Trskeqttsiteses
.,17.AS'K ATRIUTS

______wo eaato:u daA> Y- 4 '' f 'z mnimu -

Regula Overhaul6' /218
T~d 24)ilbi HA 12ON

SeI~ie Reai Avle~ s,

Pre~~Immediat Teser&equisites
sa~ra InsaU: tidreal

HARPOONr HAR~aI~3~ ~POONera et n
S cMTT Visit 1,tam; Meia In12to

Mojd MTT Visit 2,S~ m '

- i c l- ii 7, -,--, o-

Figure~~P 13.a'u Neede Tas Atriuts t ii

HARPON.Gidihc'ii68



The needed tasks list is empty until the user selects a resource, then the list of needed
tasks (previously defined) for that resource are displayed. The user then selects one or

more of the needed tasks and assigns values for the various attributes. The user may

select one or more prerequisite tasks from the list. Once a prerequisite task is selected,
two empty fields appear to the right, allowing the user to define an ideal interval between

the task and each prerequisite, and the allowable slack in that ideal, if any. The defaults

are zero for both values. The user may also identify other tasks which are compatible

(ie. may be performed concurrently). The "Save" and "Revert" buttons have the same

functionality as in previous windows.

i. Direct Assignments

The "Lock-ins" window, Figure 14, is displayed when "Lock-ins" is selected

from the Main Menu. It allows the user to circumvent the optimization routine and to

assign directly any needed tasks to any period in the schedule. The user selects the re-

source and the needed tasks and their durations are displayed. The user then can select

any one of these tasks, click a desired time period and the task will be displayed in that

time period and any following time periods if the duration is greater than one. The

"Save" and "Revert" buttons store or restore the direct assignments for a give resource.

j. Goal Identification

The user is given the ability to view each of the cost factors and assign

weighting factors in the "Goals" window, Figure 15, which is displayed when "Goals" is

selected from the Main Menu. When the user selects one of the four goals which the

application models, a description is displayed which explains how the cost is computed.

The sliders which control the associated weight factors are displayed all the time. This

allows the more experienced user, who no longer needs to review the explanation, to

make any weight adjustment deemed necessary. The user adjusts the weight factors by

moving the associated slider up (increased weight) or down (decreased weight). The

range of each of these sliders is from one to two. Under "Settings", the "Save" button

is used to save a particular setting of the sliders and the "Retrieve" button allows the user

to retrieve a previously stored setting. The "Solve" button is used to initiate the solution

process using the settings that are shown. Pressing this button will call up a panel which

allows the user to specify output parameters for the optimal schedule which is generated.

k. Schedule Presentation

Although not currently implemented, selecting "Schedule" from the Main

Menu will allow the user to view the optimal schedule generated by the solver. Ideally,

69



ura 0
FFI, 0

Mr fe-ARWmom.
is es

%Wj fr- I.-.; A 9 U J 4W W
esWormesi: I 4W id edan

urmstri asiSl _,77 M
Reeves (CG 24)

OPP Exam, Gas
W ihQbDfb7tr;:tZ'.

q#n 'OPP-
Mey&k6fd IFF31'058)

Iff-MIMIST. Is
lfn0e'pe'n'di6 jGV 62)

n on
midw

Arn )'C'Rr SeW'Be

F ,Z:Z4 F4-- -
7

'IXED SCHEDULE IG M

W!
OPP Amm0

4,

week t ' __Q;

*77eil i e k Xv;i ku

7

Figure 14. Lock-ins Window

70



i- .Save

~ '-Abk, e Stac Range (ASR)j~

-SOLVE: IdealLa~

Cost- -~ Cost
IwF WF2 PRj~J PR;,'

~ Cost

A T'

rTask Inclusion.C Task Omission C equencing CTask 7ype

- - 4 WF WF6 WF7WF WF9 WF1 0

Figure 15. Goals Window~

71



the user will be given a choice of views which allow the schedule information to be an-

alyzed from different perspectives.

D. SUMMARY

Th2 interface components of TaskAlaster that have been designeu o this point are

those that allow the uscr to input the data and parameters to the model. The data and

parameters which are solicited are based on the generic scheduling model that .x -is pre-

sented in Chapter II. Connection with the actual model remains to be accomplished.

The Task Master prototype was designed employing the interface principles of Chapter

III and the more specific concepts that were formulated during the prototyping process.

The Taskmaster prototype provides an alternative to the fixed formatted files and the

fixed model parameters traditionally associated with scheduling models. It also demon-

strates how an interface can be constructed generically to accommodate different prob-

lem domains. The TaskMaster prototype is designed to be intuitive enough to be

understood by the ccheduler with limited OR knowledge and therefore designed to entice

schedulers to use the sophisticated OR scheduling tools which many have previously

avoided.

72



V. OBSERVATIONS AND RECOMMENDATIONS

A. OBSERVATIONS

1. Prototyping is an Effective Methodology

In recent years prototyping has gained popularity as an application develop-
ment methodology. During the development of the TaskMaster interface it proved to
be an invaluable methodology. Interface design is such that it is almost always more
effective to view a prototype display than to try to describe it. Prototyping also quickly

exposed potential problems and solutions which probably would not have been identified

until much later with a more traditional development approach. The benefit of proto-

typing in this thesis was the ability to not only suggest an approach, but also demon-

strate it.

2. Prototype Design is not Easy

There are many different ways of doing essentially the same thing. The difliculty
is in identifying the one that will be most effective. This is the essence of much design
work. It is often hard to know where to begin, and, once begun. there are the inevitable

set backs that occur when a better, more efficient approach is identified. The process

of prototyping often involves two steps forvard, and one step back. It truly is a learning

process. The advantage of prototyping is that this experience is gained early on rather
than after the design has been fully (and incorrectly) developed on paper.

The graphical user interface, while greatly enhancing the utility and clarity of
the system to the user, exponentially increases the decisions that can be made by the user

(ie. size of font, gray scale, style of control mechanism). This has been largely offset by
the development of standard graphical objects within the Interface Builder on the NeXT,

however, a significant number of choices remain.

3. Reusable Objects Greatly Improve Productivity

Once some useful graphical objects have been designed, the ability to reuse them
throughout the design (including slight variations) is a great time-saver. The impact of
this approach was observed in the number of lines of code generated. Initial develop-

ment effort resulted in the creation of a large amount of new code, but as the develop-
ment progressed beyond that initial stage the increases were much smaller due to reuse
of previously dcvcloped objects. In addition to the advantage of speeding development.

it ;tlo results in an interface with a more consistent "look and feel'.

73



B. ADDITIONAL RESEARCH AND DEVELOPMENT

There are at least three areas of additional research which would logically follow

from this initial development. These three are discussed briefly below.

1. Extend TaskMaster to Schedule Output

TaskMaster was developed primarily as proof of a concept, however, as an ev-

olutionary prototype it could eventually be developed into a fully functioning DSS. Due

to time limitations only model parameterization and data entry were addressed in this

first iteration. The full integration of the interface with the solver, and the design of

output representations remain. The principles of interface design explored in this thesis

could be used to extend the prototype to include these representations. The depiction

of large solution sets and providing information on the sensitivity of the solution to the

various constraint and objective coefficients are two areas of special importance.

2. Develop the Database Subsystem

This thesis concentrated primarily on the dialog subsystem, or interface, because

that has the greatest influence on making the system directly usable by decision makers.

The third component of the DSS, the database subsystem needs to be more fully devel-

oped to make this a more functional DSS. A relational approach has been suggested

and some basic concepts have been mentioned in this thesis which could be extended to

the design of a database management system to compliment the model and the dialog.

3. Combine iwith the CPM Model

It was mentioned in the scheduling chapter that ideally a scheduling DSS would

encompass several mathematical models. During the course of designing Task Master,

the basic nature of the scheduling problem was explored for the purpose of identifying

a fundamental model structure. This exploration led to a comparison of the set-

partitioning solution technique with the CPM model. The CPM model essentially

models one constraint; prerequisite relationships. Further, the CPM model itself does

not provide a rigorous solution, except for those activities which lie on the critical path.

In this way the output of the CPM model may be viewed as a class of problems. Some

models add a resource leveling constraint to the output of the CPM solution to identify

an optimal solution. The set partitioning aspect of the generic model presented in this

thesis could function as a leveling mechanism to be used in concert with CPNI. The class

of solutions that result from the CPM technique could be fed into the generic model and

an optimal solution generated. This would be an interesting topic for further study.

74



C. CONCLUSION

This thesis was initiated based upon the conviction that there was an advantage to

be achieved by putting models directly into the hands of decision makers. This con-

viction has increased during the course of the research. It became increasingly apparent

that the real success of a scheduling system often lies not in providing an optimized

solution, but rather in the ability to provide the user with an understanding of the very

nature of the process itself. This observation is similar to that made by Goodman:

Thus, the modeling process provides additional insight into the scheduling problem
and results in a standardized method for evaluating a proposed schedule. The ability
to critically evaluate and compare alternative proposals is potentially the greatest
management tool to be gained from automating the scheduling process through the
use of an optimization model. [Ref. 39: p. 150-153].

History shows that the most successful manager is not the one who most accurately

models the current constraints, but the one who most effectively uses his understanding

of the system to change or eliminate them. Therefore, any system which unnecessarily

confuses the decision maker or obscures the vision of the solution process is counter-

productive. This objective dictates a different approach to the design of interfaces to

these models. They must be designed so that they are understandable and easy to use

while still powerful enough to model meaningful problems. They must guide decision

makers through the decision process, educating them if necessary in the nuances of the

model. And, they should be flexible enough to handle a variety of cases. This thesis and

the Taskillaster prototype should effectively demonstrate the viability and attractiveness

of this approach.

75



LIST OF REFERENCES

1. O'Dell, D. D., The Design and Implementaion of a Visual User Interface for a

Structured Model Management System, Master's Thesis, Naval Postgraduate

School, Monterey, California, March 1988.

2. Woolsey, R. E. D. and Swanson, H. S., Operations Research for Immediate Appli-

cation, A Quick and Dirty Approach, Harper and Row Publishers, 1975.

3. Hackathorn, R., and Keen, P. G. W., "Organizational Strategies for Personal

Computing in Decision Support Systems," Management Information Systems

Quarterly, v. 5, no. 3, pp. 21-27, September 1981.

4. Geoffrion, A. M., "Can MS,,OR Evolve Fast Enough?" Interfaces, Vol 13, No.1,
pp. 10-25, February 1982.

5. Jones, C. V., "The Three-Dimensional Gantt Chart," Operations Research, v. 36,

no. 6, pp. 891-903, December 1988.

6. Carlson, E. D., and Sprague, R. H., Building Effective Decision Support Systems,

Prentice Hall, 1982.

7. Brennan. J. J. and Elam, J., "Enhanced Capabilities for Model-Based Decision

Support Systems." in R.H. Sprague and II.J. Watson (ed.), Decision Sutport S"s-

tens, Putting Theory Into Practice, pp. 130-137, Prentice Hall, 1986.

8. Loyola, S.J., Reilly, N.B., and Werntz, D.G., "Problem-Independent Scheduling
Systems," paper presented at ORSA TIMS, New York, New York. 16 October

1989.

9. Gcofl'rion. A. M., "An Introduction to Structured Modeling." 3lanagement

Science, v. 33. no. 5, pp. 547-588. May 1987.

76



10. Wing, V. F., SURFSKED An Optimization Aid for Surface Combatant Inter-

Deployment Scheduling, Master's Thesis, Naval Postgraduate School, Montere',

California, September 1986.

11. Baker, K. R., Introduction to Sequencing and Scheduling, John Wiley & Sons Inc.,

1974.

12. Dolan, M. K., and Kroenke, A. D., Database Processing; Fundamentals, Design,

Implementation, Chicago, IL, Science Research Associates, 1988.

13. Dolk, D. R., and Konsy'ski, B. R., "Model Management in Organizations," Infor-

mation and .Ianagement, Vol 9, No.1, August 1985.

14. Simpson. 11., "A Human-Factors Style Guide for Program Design," BYTE, v. 7, no.

4, pp. 10S-132, April 1982.

15. Draper, S. W., and Norman, D. A., User Centered Systems Design: New Perspec-

tives on Iluman-Computer Interaction, Lawrence Erlbaum Associates,Inc., 1986.

16. Jones. C. V., "User Interfaces." Working Paper, Department of Decision Sciences,
The Wharton School, University of Pennsylvania, Revised December 1988.

17. Shneiderman, B., Designing the User Interface: Strategies for Effective Human-

Computer Interaction, Addison-Wesley Publishing Company. 1987.

IS. Bennett, J. L., "Analysis and Design of the User Interface for Decision Support

Systems." in J. L. Bennett (ed.), Building Decision Support Systems, pp. 41-64,

Addison-Wesley, 1983.

19. Card. S. K., Moran. T. P. and Newell, A., The Psychology of Iuman-Computer

Interaction, Lawrence Erlbaum Associates, 1983.

20. Carroll, J. M.. and Rosson. M. B., "Paradox of the Active User," Interfac,.%g

Th,,ught. Carroll. J. M. (Ed.). pp. 80-111. MIT Press, 1987.

77



21. Barlow, V. M., Bentley, L. D., and Whitten, J. L., Systems Analysis and Design

Methods, 2nd ed., Irwin, 1989.

22. Alter, S. L., "Why is Man-Computer Interaction Important for Decision Support

Systems," in Decision Support Systems a Data-Based, Model-Oriented, User-

Developed Discipline, W. C. House (ed.), Petrocelli Books Inc., 1983.

23. Smith, D. C., and others, "Designing the Star User Interface," BYTE Magazine, pp.

242-282, v. 7, no. 4, April 1982.

24. Mills, C. B.. and Weldon, L. J., "Reading Text from Computer Screens," ACM

Computing Surveys, v. 19, No.4, pp. 329-358, December 1988.

25. Tufte, E. R., The Visual Display of Quantitative Information, Graphics Press, 1983.

26. Brooks, R., "Using A Behavioral Theory of Comprehension in Software Engineer-

inc." The Third International Conference on Software Engineering Proceedings, pp.

196-201, 1978.

27. Poole, L., "A Tour of the Mac Desktop," IaciWorld, vol. 1, no. 1, pp.16-21, 1984.

28. Laurel, B. K., "Interfaces as Mimesis," User Centered Systems Design.- New Per-

spectives on Human-Computer Interaction, Draper, S. W. and Norman, D. A. (Eds.).

Lawrence Erlbaum AssociatesInc., 1986.

29. Baran, N., and Haves, F., "A Guide to GUIs." BYTE, v. 14, no. 7, pp. 250-257, July

1989.

30. Beard, M., and others, "The X.rox Star: A Retrospective," IEEE Computer, pp.

11-29, September 1989.

31. Meng, B., "Object-Oriented Prograrnuing," MaclI'orld, pp. 174-180, January 1990.

32. tlartson, Hf. R., "User-Interface Management Control and Communication." IEEE

Softwtare. v. 6. no. 1. pp. 62-70. January 1989.

78



33. Calder, P. R., Linton, J. M. and Vlissides, J. M., "Composing User Interfaces with

Interviews" Computer, v. 22, no. 2, pp. 8-22, February, 1989.

34. Bannon, L. J., Draper, S. W., and Norman, D. A., "Glossary," User Centered Sys-
tems Design. New Perspectives on Human-Computer Interaction, Draper, S. W., and

Norman, D. A. (Eds.), Lawrence Erlbaum Associates,Inc., 1986.

35. Turban, E., Decision Support and Expert Systems, Managerial Perspectives,

Macmillan Publishing Co., 1988.

36. Hartson, IH. R., and Hix, D., "Human-Computer Interface Development," ACI

Computing Surveys, v. 21, no. 1, pp. 5-92, March 1989.

37. Brooks, F., The 3lvlhical Man-Month, Addison-Wesley, 1985.

38. Larkin. I)., and others, NeXT Preliminary 1.0 System Reference Manual: Concepts,

NeXT Inc., 900 Chesapeake DR, Redwood City, CA 94063., 1989.

39. Goodman. C. E., Annual Scheduling of Atlantic Fleet Combatants, Master's Thesis.

'Naval Postgraduate School, Monterey, CA, March 1985.

79



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Lieutenant S. R. Banham 2
US Nax" Public Works Center
FPO San Francisco 96630

4. Professor Gordon H. Bradley, Code ORBZ 10
Naval Postgraduate School
Monterey, CA 93943

5. Professor Daniel R. Dolk, Code ASDK 3
Naval Postgraduate School
Monterey, CA 93943

6. Computer Technologies Curricular Office, Code 37 1
Naval Postgraduate School
Monterey, CA 93943

7. Commanding Officer
Naval Aviation Maintenance Office (NAMO)
Code 611
Naval Air Station
Patuxent River, MD 20670-5446

80


